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Preface

During this twenty-first century, we are witnessing the miniaturization in the
intelligent products. The era of miniaturization should continue for the next few
decades. The size of the transistor is almost approaching to atom size of 5 nm. In
such a context, the SOC design and prototyping domain have substantially grown
with the objective to deliver the intelligent and cost-effective products.

If we look at the domestic market, then the applications of SOC-based design in
the areas of wireless, multimedia, processors, controllers, image processing, and the
interface protocols have grown up substantially during this decade. This has a real
impact on the cost of products due to the competitive nature of the market.

If we try to perceive the technology evolution in the present decade, then we can
conclude about the evolutions in the EDA algorithms and the processes to cater to
the need of the SOC design and validation. Many EDA vendors like Xilinx,
Intel FPGA, Synopsys, Cadence cater to the need of the SOC design. These
companies have the sophisticated EDA tool chain and the high-density FPGA board
support.

By considering all the above, the manuscript is organized into 16 chapters.

Chapter 1: ‘Introduction’: This chapter describes the introduction to SOC design,
concept of SOC, SOC design flow, and technology process node and shrinking.

Chapter 2: ‘SOC Design’: This chapter discusses the SOC design flow and
challenges. The need of SOC prototyping and the challenges in the SOC proto-
typing are also discussed in this chapter.

Chapter 3: ‘RTL Design Guidelines’: This chapter discusses the important
guidelines and practical considerations which can be useful during RTL design
phase. These guidelines can be tweaking of RTL to improve the design perfor-
mance or the use of other efficient techniques using Verilog constructs.

Chapter 4: ‘RTL Design and Verification’: This chapter discusses the RTL
design and verification strategies. This chapter is useful to understand the role of the
RTL design and verification engineer and important concepts to achieve the effi-
cient SOC prototype!.
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Chapter 5: ‘Processor Cores and Architecture Design’: The main objective of
this chapter is to develop the thought process of the engineers while sketching the
architectures and micro-architectures for the processors. This can be helpful to
design the products and new ideas. This chapter is useful to understand the hard IP
cores’ use during SOC prototyping.

Chapter 6: ‘Buses and Protocols in SOC Designs’: This chapter discusses the
few protocols used in the design and their use. This chapter also discusses about the
bus architecture and data transfer schemes and techniques. This chapter is useful to
understand the basics of I2C, SPI, AHB bus protocols.

Chapter 7: ‘Memory and Memory Controllers’: The SDRAM or DDR memory
controllers are used extensively in the SOC designs. This chapter discusses the
memory controllers and interface techniques with the external memory. The timing
constraints for such type of controller are a decisive factor for the overall design and
are discussed in this chapter.

Chapter 8: ‘DSP Algorithms and Video Processing’: This chapter discusses the
DSP algorithms and the role of the design engineer to achieve the desired perfor-
mance for the DSP designs. This chapter is useful to understand the basics of FIR
and IIR filter designs using Verilog and the performance improvement for the
design. The video encoder and decoder architectures and micro-architecture to
design them using Verilog is also discussed with the practical scenarios.

Chapter 9: ‘ASIC and FPGASynthesis’: This chapter discusses the logical synthesis
for ASIC and FPGA designs. During the ASIC prototyping, FPGAs are used and how
the ASIC designs can be migrated to FPGA is discussed in this chapter. This chapter
focuses on the important RTL design concepts, design portioning, block- and
chip-level synthesis to start with. The design constraints used during the synthesis are
discussed in this chapter with the practical scenarios. This chapter also focuses on the
Synopsys DC commands used during the synthesis. The gated clocks and imple-
mentation for ASIC and FPGA are discussed with practical examples and scenarios.

Chapter 10: ‘Static Timing Analysis’: This chapter discusses the static timing
analysis (STA). The timing paths, maximum frequency calculations, input insertion
delay, and output insertion delays are discussed in this chapter with the practical sce-
narios. The Synopsys PT commands are discussed in this chapter. How to achieve the
timing performance to meet the timing constraints is also discussed with the practical
scenarios. This chapter is useful for the ASIC and SOC designers to understand the
timing in the design and to overcome timing violations in the design. Even this chapter
discusses the FPGA timing analysis with practical examples and design scenarios.

Chapter 11: ‘SOC Protototyping’: This chapter discusses the FPGA functional
blocks with their use. The logic inference using FPGA is discussed with the real-life
scenarios. This chapter discusses the prototyping challenges and how to overcome
them.

Chapter 12: ‘SOC Prototyping Guidelines’: This chapter discusses important
design guidelines used during SOC prototyping. The prototyping performance is
based on how the design is partitioned into multiple FPGAs. What are IO speed and
bandwidth? And how synchronizers are used? This chapter focuses on all these
aspects in much more detail using the practical examples and considerations.
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Chapter 13: ‘Design Integration and SOC Synthesis’: This chapter discusses the
SOC synthesis and the design partitioning. The chapter focus of this chapter is to
address the important aspects while partitioning the design. The chapter is also
useful to understand about the concepts like partitioning, synthesis and STA. How
to overcome the partitioning challenges and how to efficiently use the synthesis,
place and route and STA tools with an incremental approach to validate the
complex SOC designs are also discussed in this chapter!

Chapter 14: ‘Interconnect Delays and Timing’: This chapter discusses the
high-speed interconnects and their need in the design. This chapter focuses on delay
aspects, issue, challenges, and solutions to have the high-speed FPGA prototype
using multiple FPGAs. The IO multiplexing, time budgeting, and interconnectivity
between FPGAs are described using the practical considerations and design
scenarios.

Chapter 15: ‘SOC Prototyping and Debug Techniques’: This chapter discusses
the important considerations while choosing the target FPGA to validate the SOC
designs. This chapter even covers the multiple FPGA designs and considerations,
risk, and challenges and how to overcome them. This chapter also covers the Xilinx
Zynq-7000 device features and the SOC platform considerations.

Chapter 16: ‘Testing at the Board Level’: This chapter discusses the important
points while testing the board for the SOC design validation. This chapter covers
the debug planning, challenges, board testing for the single FPGA and multiple
FPGAs. This chapter can give the understanding of the use of the logic analyzer
while testing the SOC design. The inter-FPGA connectivity issues and pin and
location constraint issues are also discussed in this chapter.

As stated above, the manuscript is organized to cover the SOC design and proto-
typing concepts using the high-density FPGAs. The readers will be able to enjoy the
manuscript due to the examples and practical scenarios listed in the various
chapters.

Pune, India Vaibbhav Taraate
Entrepreneur and Mentor
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Chapter 1
Introduction

The number of transistors incorporated in dense integrated
circuit will be doubled in approximately 18 to 24 months.

Gordon Moore

Abstract During this decade, the complexity of the ASIC design has increased sub-
stantially. The need of the ASICs in the wireless, automotive, medical, and other
high processing application has grown. The objective of this chapter is to have dis-
cussion about the ASICs and the challenges in the ASIC designs. The chapter even
discusses the ASIC design flow, process node evolution, and the SOC architecture.
This chapter is useful to understand the steps involved in the design of ASIC.

Keywords ASIC · SOC · ASSP · Standard cell · Gate array · Structured ASIC
Synthesis · IP ·Micro ·Multitasking · Clock rate · Data rate · Bandwidth
The ASIC design for the billion gate logic is the need of this decade. The application
areas may be wireless communication, high-speed computing, or the video process-
ing. In all these areas, we need to have the high-speed ASIC chips. The prototype
for such ASIC or SOC is the requirement to identify the bugs at the implementation
level and to measure the performance. In simple words, this avoids the respin of the
ASIC chip. In this context, the chapter discusses the ASIC design flow, challenges,
and basics of ASIC prototyping.

1.1 Moore’s Prediction and the Reality

If we consider the introduction of first integrated circuit (IC) by Jack Kilby during
year 1958 at Texas Instruments (TI), then nobody had imagined that the integrated
circuit (IC) can become so complex during twenty-first century. During 1965–1975,
Gordon Moore, Cofounder of Intel, predicted that ‘The number of transistors in
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Fig. 1.1 Feature size versus calendar year

dense integrated circuit will double approximately in 18–24 months.’ We call this
as Moore’s law. More than the law, it is treated as prediction and used to plan the
integrated circuit design investment and evolution cycle.

The process node has shrunk enough from few micrometers to 10 nm during last
fifty years and even shrinking further. The high-density ASIC designs have many
challenges. Those challenges in the current decade are due to the complex design
functionality, low-power, and high-speed requirements. Those will be integral part of
any design cycle, and those can be overcome by improving the design architectures.
Still there are lotmany other challenges due to physical and environmental conditions
for the lower process node ASICs and SOCs!

If we consider the transistor scaling, then it has some limitations and the real
challenge is the device physics. The reality in the design and characterization of
the ASIC cell libraries at lower process node is time-consuming phase and involves
huge cost. A. S. Rock had stated that ‘The investment requirement for the ASIC
chip fabrication doubles approximately 4 years,’ and we call this as Rock’s law or
Moore’s second law.

Figure 1.1 gives information about the process node evolution. As shown, the
process node has shrunk to almost 10 nm, and even further, it will shrink to 7 nm
and below. There will be technology changes and the new manufacturing processes
to cope up the challenge of further miniaturization.

According to Intel Technology [1], the transistor density for the 10 nm hyper-
scaling provides approximately 2.7 times transistor density improvement as com-
pared to the previous process node of 14 nm.

The limitation in the shrinking is due to the demand and requirement of low-power
architectures. Is the shrinking process node meet the required dynamic, static, and
leakage power that is one of the questions and even challenges to the designer?
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Fig. 1.2 Mobile application process technology

Let us consider the mobile SOC; the end user needs functionality at the lower
cost. So the SOC design challenge in this area is the design of chipset having low
power consumption, multitasking and the design functionality, optimization, and so
on. As shown in Fig. 1.2, the mobile SOC chipsets are designed using 10/14 nm
process node during 2016 and the process node will be evolving further to meet the
consumer demands (Fig. 1.2).

International Technology Roadmap for Semiconductors (ITRS) pays much more
attentions on the chip-level system design and the design strategies. ITRS assesses
the design trends, design technologies, and future development to make the SOC
designs more robust. ITRS produces the road map with new additions which can
be even applied to the billion gate SOC designs. The major objective of ITRS is to
produce roadmap for the ASIC design.

The important points in most of the road maps by ITRS are the cost of the design,
manufacturing cycle time, and the target design technology. For the semiconductor
customers, the major challenge is the NRE cost which is of millions of dollar. Few of
the ITRS road maps produced in the past decade focuses on the reduction in the cost
of the design. The important message from such road-maps is that the NRE cost for
mask and testing has reached up to fewhundredmillion dollars during this decade and
if due to design specification changes or due tomajor shortfalls in the design if design
respins then such costs will multiply. Due to changes in the process technology, the
design product life cycle has shortened, and due to that, the time to market is very
critical issue for the semiconductor design and manufacturing companies.



4 1 Introduction

If we consider ASIC design, then the design or verification cycle is few months
and manufacturing time is few weeks. There are uncertainties in the design and
verification but lowuncertainty in the chipmanufacturing.Under such circumstances,
the investments in the process technology have dominated the investments in the
design technology. But the important point is that the design cost of the power-
efficient ASICs/SOCs during year 2016 is almost around few million dollars versus
the hundreds of million dollar investments in the past decade.

Still if we consider ASIC applications, they need software and hardware commu-
nication; so during this decade, systems are typically of the embedded type. Almost
around 70–80% of the cost is invested to develop software for such systems. During
this decade, the ASIC test cost has significantly grown, and for any complex design,
the cost of verification is much more as compared to the design cost!

The ITRS assessment and the road map is classified into two major verticals. One
is the silicon complexity which is related with the physical design of the chip and
other is the system complexity which is related with the system design scenarios and
complex functionality.

Most of the ITRS reports suggest the following important highlights related with
the physical design:

1. High-frequency devices and interconnects: The major challenge is due to the
noise, signal integrity, delay variation, and cross-coupling of the devices.

2. Non-ideal scaling of the parasitic and supply or threshold voltages: Due to
non-ideal scaling, the real challenge is to meet the power constraints.

3. Interconnect Performance: How to scale the interconnect performance to estab-
lish the communication is one of the challenges.

4. System-wide clock synchronization: It is not feasible to implement the syn-
chronous clocking structure for the overall system due to the low power and
uniform skew requirements.

Design and manufacturing companies need to think about all these challenges
during the design of low-cost, low-power ASIC chips. During this decade, we are
witnessing the real limitation in shrinking and doubling of the transistors in dense
integrated circuits which has the real impact on the overall road map for the new
processor availability!

Apart from these physical design challenges, the system designer needs to think
about the cost for the verification and testing, the long verification cycle, the block
reuse for the hierarchical designs, hardware and software codesigns, and last but not
least the design/verification team size and the geographical locations. In future also,
these will remain as important challenges.

The standard node value for year 2017–2020 is shown in the following Fig. 1.3.
So we will be able to use the Intel chips of 6.7-nm process node by year 2020.
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Fig. 1.3 Standard node year by year

1.2 ASIC Designs and Shrinking Process Node

Consider the last century where the chip had single processor and multiple periph-
eral/memories devices. Consider Fig. 1.4 and as shown, the single processor com-
municates with the memories (RAM, ROM) and peripheral using the common bus.
That was the requirement during the last century when the microprocessors were at
the evolving stage.

During this decade, these kinds of SOCs are available in the market at lower cost
and can be used in the embedded system design. They can be available by quoting
their part numbers. So they are called as ASSP. The traditional application-specific
standard product (ASSP) shown has the single processor communicating with the

Fig. 1.4 Single-processor system
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Fig. 1.5 Standard node trend

IO device, ROM, RAM using shared bus. The gate count of the processor during
early 1980s was almost around few thousand logic gates to few lakh logic gates. The
design speed was in few MHz, and process node was almost 600 µm. In the present
scenario, the process node is 10 nm and the design and manufacturing companies
are facing many challenges like the speed and power requirements.

As stated earlier, during this decade, designs are complex and the real requirements
for the ASIC designs are extensive parallelism, low-power architectures, embedding
the processing functionality including high-end audio/video algorithms on the small
silicon area. So the requirement is of the multiple processors and processing engines,
reconfigurable environment, and that is the reason of the technology shift toward
lower process nodes.

The process node trending during this decade is shown in Fig. 1.5.
So to meet the demand and supply in the market and to innovate the semicon-

ductor products Global Foundries (GF), Intel, Samsung, and Taiwan Semiconductor
Manufacturing Corporation (TSMC) can fabricate the ASICs using lower than 7-nm
node by the year 2020.
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Fig. 1.6 Intel processor evolution during year 1970–2010

1.3 Intel Processor Evolution

As shown in Fig. 1.6, during almost past 50 years, the transistor count has increased
exponentially. The clock rate of processors has improved significantly for the required
power. This indicates that the real challenge in design of processor chips is to meet
the required clocking rate and power requirements.

1.4 ASIC Designs

Application-specific integrated circuit (ASIC) is designed for the specific purpose or
application. The ASIC chips are designed using full-custom or semi-custom design
flow. The full-custom design starts from the scratch, and required cells are designed
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for the specific process node. In case of semi-custom ASIC, the prevalidated stan-
dard cells and libraries are used and the required additional cells are designed. The
additional required functionality may be the design of standard cells and IPs. The
ASIC design flow is classified as logical design flow and physical design flow.

The logical design flow involves the design entry using HDL, functional verifica-
tion of ASIC, synthesis and test insertion and prelayout timing analysis. The physical
design flow involves the floorplan, power plan, clock tree synthesis, placement and
routing of the design, and finally, the post-layout timing analysis and the testing of
the chip.

As stated earlier; in the present decade, the ASICs are complex and may have the
billion gates. They can be used in the many applications such as wireless communi-
cation, high-speed video processing. In all these applications, the designer needs to
have the understanding of the functional specifications, architecture of the design,
and even the hardware and software partitioning.

Using the functional specifications, the functionality can be described in the form
of the functional blocks; it is also called as architecture of the chip. The complex SOC
architecture involves the understanding of the specifications and the creation of the
block representation of the design. The architecture design team creates the architec-
ture. The architecture andmicro-architecture document involves the functional block
details required to realize the ASIC; even the document can have information about
the speed, area, and power requirements with the hardware and software partitioning
details.

If we consider the evolution of processors during the early 1980s, then the design
was very simple due to the need of the single processor and few peripheral devices
communicating using the shared bus. During this decade, the designs need the multi-
ple processors, pipelining, concurrency with the architecture exploration for the low
power and high speed.

The major challenges in such kind of design are listed below, and mainly they are

(1) Architecture and system partitioning
(2) Low-power management
(3) Use of the functional and timing proven IPs
(4) Test methodology and equipments
(5) Verification planning
(6) Deep submicron effect and integration
(7) Lesser time to market
(8) Advance processes and simulation models

The SOC which can be used in the multimedia applications is shown in Fig. 1.7.
It has the key blocks like video and audio processing engines, memory, processor,
interfaces, bus logic, and general purpose IO interface. The video output and audio
output is available from the video and audio processing engine, respectively. The
SOC architecture can be improved by adding one or more than one processors in
the audio and video processing engine. As each processor performs the operation
concurrently, it can produce the high-resolution video and high-quality audio.
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Fig. 1.7 SOC for multimedia

1.4.1 Types of ASIC

As stated earlier, the chip designed for the specific purpose or application is called as
application-specific integrated circuit (ASIC). Mainly, the complex ASIC consists
of the multiple processors with the memories and other functional blocks like the
external interfacemodules. The chip can have analog and digital blocks. For example,
consider the design of the ASIC used in wireless communication, and it should have
the transmitter and receiver. The chip should have one or more than one processor to
perform the parallel processing of the data and shouldmeet the required performance
and throughput criteria.

An integrated circuit (IC) is made up of silicon wafer, and each wafer can
have thousands of die. Most of the time, we often come across the term which
is application-specific standard product (ASSP), and they are available in the market
by quoting part numbers. For example, the processor chips, video decoders, audio,
and DSP processing chips.

ASICs are primarily classified into following categories, and they are named as:

• Full-custom ASIC
• Semi-custom ASIC
• Gate array ASIC

Full-custom ASIC: In such type of ASIC designs, the design needs the charac-
terization of the standard cells. So the design starts with the standard cell design and
characterization and validation. The design flow of such design includes the design
and validation of the required cells or gates. The preexisting cells are not used in
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such kind of ASIC. Consider the design scenario where the design specifications are
given to the design team with the requirement of the speed, power, and area. If the
preexisting cell does not meet the required performance criteria, then the option is
to design the required cells for the target process node. The design cycle in such
type of ASIC is longer due to time required to design the standard cells, macros and
validation of them.

Semi-custom ASIC: In such kind of the design, the preexisting standard cells
of logic gates (AND, OR, NOT, EXOR), MUX, flip-flop, and latch are available
and used during the design cycle. In this design, team uses the standard cell library
where already the cells are predesigned and pretested. This involves the lesser time
to market, lesser investments, and even the low risk as compared to full-custom
design. Consider the scenario where the standard cell and macros are predesigned
and validated for the 10-nm process node. Now, the specifications are given to the
design team to design the memory controller using 10-nm process node. In such kind
of scenario, the design team uses the predesigned, pretested standard cell libraries.
This reduces design cycle time and the risk during design cycle. The standard cell
libraries are designed using the full-custom design flow only, and the standard cells
can be individually optimized.

Gate Array ASIC: The gate array ASICs are further classified as

• Channeled gate array
• Channel-less gate array
• Structured gate array

In the gate array ASIC, the design involves the base array and base cell. The base
array is the predefined required pattern of the transistors on the gate array. The base
cell is broadly described as the smallest element in the base array. In such kind of
ASICs, the cell layout is same for all the cells but interconnects between the cells,
and inside of the cell is customized.

1.5 ASIC Design Flow

The ASIC design starts with the idea to realize the product or design for the specific
application. The first step is to gather the specifications for the design maybe through
the market research or depending on the innovation. The requirement analysis and
market survey can be used by the team of architects and engineers to formulate the
detailed specifications for the proposed ASIC (Fig. 1.8).

1. Design Specifications: The ASIC specifications include the functionality of the
design, electrical characteristics, the mechanical assembly. The focus of this
book is to design and prototype SOC, and hence, we will elaborate the flow by
considering the design specifications.

2. Architecture Design: By using the design specifications, the architecture and
micro-architecture can be described for theASIC. TheASIC design is partitioned
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into small blocks, and the block-level design is described at the higher level.
For example, if ASIC uses processor, then while sketching the architecture the
architect team should think about the functionality, speed requirements, external
interfaces, pipelining, IO throughput. By using these details, the architecture and
micro-architecture for the ASIC can be evolved in the iterative way. Although it
is time consuming, the efficient architecture and micro-architecture document is
need of the design cycle. This can be used as reference document throughout the
design and implementation of ASIC/SOC.

Fig. 1.8 ASIC design flow
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Fig. 1.9 Logical design flow
important steps

3. Logical Design: ASIC logical design involves the design partitioning, RTL
design, RTL verification, synthesis, test insertion, and the prelayout timing anal-
ysis. Figure 1.9 gives information about the ASIC logical design flow at high
level.

1. Specification Understanding and architectural andmicro-architecture
for the SOC.
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2. RTL Design: Design using HDL(VHDL, Verilog, System Verilog).
3. Test Insertion: DFT memory BIST insertion, for designs containing

memory elements.
4. RTL Verification: Exhaustive dynamic simulation of the design, to

verify the functionality of the design.
5. Environment Setting: This includes the technology library to be used,

along with other environmental attributes.
6. Design Constraints and Synthesis: Constraining and synthesizing the

designwith scan insertion (and optional JTAG) usingDesign Compiler.
7. Block-level STA: Using Design Compiler’s built-in static timing anal-

ysis engine.
8. Formal Verification: RTL comparison against the synthesized netlist,

using Formality.
9. Prelayout STA: Full chip STA using PrimeTime.

4. Physical Design Flow: Figure 1.10 describes few of the important steps in the
physical design flow. The flow is iterative depending on meeting the design
constraints. If design constraints are met, then the milestone is achieved.

The details of the physical design flow are listed below:

1. Forward Annotation: Forward annotation of timing constraints to the
layout tool.

2. Floorplanning: Initial floorplanning with timing-driven placement of
cells, clock tree insertion, and global routing.

3. Clock Tree: Transfer of clock tree to the original design (netlist) residing
in Design Compiler.

4. IPO: In-place optimization (IPO) of the design in Design Compiler.
5. Formal Verification: Verification between the synthesized netlist and

clock tree inserted netlist, using Formality.
6. Timing Delay Extraction: Extraction of estimated timing delays from

the layout after the global routing step.
7. Back Annotation: Back annotation of estimated timing data from the

global routed design, to PrimeTime.
8. STA: Static timing analysis using PrimeTime, using the estimated delays

extracted after performing global route.
9. Detailed Routing: Detailed routing of the design. Extraction of real tim-

ing delays from the detailed routed design.
10. Back Annotate Timing Data: Back annotation of the real extracted tim-

ing data to PrimeTime.
11. Post-layout STA: Post-layout static timing analysis using PrimeTime.
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12. Post-layout Simulation: Functional gate-level simulation of the design
with post-layout timing (if required).

13. Tape Out: Tape out after LVS and DRC verification.

Fig. 1.10 Important steps in
the physical design flow
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1.6 ASIC/SOC Design Challenges and Areas

The twenty-first-century ASIC and SOC designs are witnessing the miniaturization
challenge as the Moore’s law has reached shrinking limitations. The real challenge
is to achieve the speed of the ASICs at low power. Nowadays, every human being
is interested in having smart phones, intelligent control appliances, and the gadgets.
The fun will be during this decade when the massive parallelism in the design of the
ASICs and SOCs will try to change the design processes and algorithms. There are
many challenges which need to be addressed; few of them are listed below:

1. ASICs can be designed for the high bandwidth and reliable communications to
meet the requirements of the end customers.

2. Google-like companies can use the ASICs in the quantum computing systems
for the speech recognition

3. Artificial intelligence area will face the challenges due to shrinking process
node, and those canbeovercomebyusing the parallelismandparallel processing
engines.

4. The medical diagnosis field will consume the large number of ASICs, and new
SOCs will be evolved with the parallel processors.

5. Text-to-speech synthesis area will evolve using the parallel processor-based
SOCs.

6. The automation in the vehicle controls to give more user-friendly controls to
the end user will evolve, and the need of ASICs in the automation will increase
drastically.

7. With improved computing and processing power, the SOCs even can be used
to control the robots in the hazardous areas with more precision and accuracy,

8. The intelligent sensors, cameras, and scanners to identify the dangerous articles
without intervention of human beings can be evolved by using the multi-SOC
designs.

9. The automations in the hospitals to monitor the health of the patient from long
distance is one of the areas which can evolve using the multiprocessors and
ASIC/SOCs.

10. As less area, high speed, and less power are the requirements in all kinds of the
ASICs and SOCs, we may witness the technology shift and algorithm evolution
to support the massive parallelism during this decade.

1.7 Important Takeaways and Further Discussions

As discussed earlier, the following are few important takeaways to conclude the
chapter

1. The SOC designs are more complex as compared to ASICs.
2. The ASIC designs can be implemented by using full-custom and semi-custom

flow.
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3. At the lower process nodes, the real challenge is to achieve the high speed and
low power.

4. Themodern SOCarchitecture needsmore number of processors, and architecture
can be treated as multiprocessor architecture.

5. The concurrency and multitasking can be few of the parameters which need to
be considered while designing a system.

6. ITRS road maps’ important points are with objective reducing the NRE costs
and respinning of ASICs for the future SOC designs.

In the next chapter, we will discuss the SOC designs and the important challenges.
The next chapter is also useful to understand about the SOC designs, verification,
and prototyping cycle and needs.
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Chapter 2
SOC Design

Cost of the semiconductor chip fabrication plant doubles every
four years.

Arthur Rock’s (Second Moore’s Law)

Abstract The chapter discusses the basics of SOC design and the SOC design chal-
lenges. The SOC design flow and the important steps are discussed in this chapter.
The need for SOC prototyping and the challenges in the SOC prototyping are dis-
cussed in this chapter. The chapter is useful to prototype engineers to understand the
basics of SOC design.

Keywords ROM · RAM · Processor · SOC · Bandwidth · IO speed · Clock rate

The basics of the SOC design, SOC design flow, and the prototyping challenges for
the SOC designs are discussed in this chapter.

2.1 SOC Designs

The design complexity has grown up extensively during this decade. Due to the low
power and high speed design requirements in various application the SOC design
and prototyping is need of this decade. If we consider any SOC, then the design
has analog and digital blocks. Figure 2.1 gives information about few of the SOC
components.

1. Processor and processor core: The high-density SOCs should have the single
or multiple processors. The multiple processor architecture can enable the con-
current execution and parallelism while executing the instructions. In most of
the applications, the high-speed, low-power processor architectures are required
to perform the complex operations. These operations may be, transfer of the
data, floating point operations, audio video processing. Most of the complex
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Fig. 2.1 Complex SOC

SOCs have the general purpose, DSP and video processors and used to improve
the overall execution performance of the SOC. Refer chapter 5 for more details
about the processor architecture and micro-architecture.

2. Internal memory: For internal data storage, the SOC should have memories
(RAM, ROM). These memories can be distributed memories or available in the
form of the memory blocks. The configurable memory cores can be used to store
the large amount of the data. If we consider the DSP processor architecture, then
the architecture can be efficient if two separate memories (data and program)
can be used. This strategy can be useful to improve the overall architecture
performance.

3. Memory controller: The DDR or SDRAM controllers can be used to commu-
nicate with the external DDR or SDRAM. The high clock rate DDR controllers
can be available from the various vendors as the IP. The timing and functional-
proven IP use can reduce the design/verification time, and they can be integrated
with the SOC components to accomplish the desired tasks. For more details refer
chapter 7.

4. High-speed bus interface: The high-speed bus interface logic can be used to
establish communication with the external host. The protocols and the bus inter-
face logic is elaborated in the chapter 6.

5. External memory interface: The application may need flash or SDRAM, and
they can be interfaced using the external memory interface.
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6. DMA controllers: To transfer the large chunk of data, the DMA controllers can
be used. The data transfer can be established for the large size of data with high
speed.

7. Serial interfaces: The serial interfaces like I2C, SPI, and UART can be used
to establish communication between the serial devices and the SOC internal
components. Refer chapter 6 for more details about the serial interfaces.

8. ADC and DAC: The analog devices can be interfaced with the other SOC com-
ponents using the ADC and DAC.

9. Clock resources: The in-built oscillators and PLLs can be used to generate the
clocks with the uniform clock skew. The clock distribution network by using
multiple PLLs can be used to support the uniform clock skew and the multiple
clock domain designs.

The next section discusses the SOC design flow and important milestones.

2.2 SOC Design Flow

With the evolution of VLSI process technology, the designs are becoming more and
more complex, and SOC-based design is feasible in shorter design cycle time due
to availability of the prototyping tools. The demand to have product in the shorter
design cycle time is possible by using efficient design flow. The design needs to be
evolved fromspecification stage tofinal layout. The use ofEDA toolswith the suitable
features has made it possible to have the bug-free designs with proven functionality.
The design flow is shown in Fig. 2.2 and it consists of the following key milestones.

2.2.1 Design Specifications and System Architecture

Freezing the design functional specifications for the ASIC or SOC is an impor-
tant phase. During this phase, the extensive market research is carried out to freeze
the functional specifications of the design. Consider the mobile SOC, few impor-
tant functional specifications can be speed of processor, functional specification of
processor, internal memory, display, and its resolution, camera, and resolution of
camera, external communication interfaces, etc. More than this, it is essential to
have information about the mechanical assembly and other electrical characteristics
of the device. They may be power supply and battery charging circuit and safety
features. The specifications are used to sketch the top-level floor plan of the chip
which we can call as architecture of mobile SOC. Even the important parameters are
environmental constraints and the design constraints. The key design constraints are
area, speed, and power.

Sketching architecture of any billion gate SOC is one of the difficult tasks as it
involves the real imagination andunderstanding of the interdependability between the
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Fig. 2.2 SOC design flow

hardware and software components. To avoid the overheads on the single processor,
the designmay need to havemultiple processors which can perform themultitasking.
The architecture document is always evolved from the design specifications, and it is
block-level representation of the overall design. The teamof experienced professional
can create such type of document, and this can be used as reference to sketch the
micro-architecture of the design.

The micro-architecture document is the lower-level abstraction of the architecture
documents, and it gives information about the functionality of every block with their
interface and timing information. Even this document should give information about
the IPs need to be used in the design and their timing and interface details.

The architecture design for SOC andmicro-architecture evolution for SOC blocks
are discussed in Chaps. 5–8.

2.2.2 RTL Design and Functional Verification

For the complex SOC designs, the micro-architecture document is used as a refer-
ence by the design team. The billion gate SOC design is partitioned into multiple
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blocks, and the team of hundreds of engineers works to implement the design and
to perform the verification. RTL designer uses the recommended design and cod-
ing guidelines while implementing the RTL design. An efficient RTL design always
plays an important role during implementation cycle. During this, designer describes
the block-level and top-level functionality using an efficient Verilog RTL.

After completion of an efficient RTL design phase for the given design speci-
fications, the design functionality is verified by using industry standard simulator.
Presynthesis simulation is without any delays, and during this, the focus is to verify
the functionality of design. But common practice in the industry is to verify the func-
tionality by writing the testbench. The testbench forces the stimulus of signals to the
design and monitors the output from the design. In the present scenario, automation
in the verification flow and new verification methodologies have evolved and used to
verify the complex design functionality in the shorter span of time using the required
number of resources. The role of verification engineer is to test the functional mis-
matches between the expected output and actual output. If functional mismatch is
found during simulation, then it needs to be rectified before moving to the synthesis
step. Functional verification is iterative process unless and until design meets the
required functionality. For better outcome the team of verification engineers uses the
verification plan document. This can result into the better coverage goals.

2.2.3 Synthesis and Timing Verification

When the functional requirements of the design are met, the next step is synthesis.
Synthesis tool uses the Verilog RTL, design constraints, and libraries as inputs and
generates the gate-level netlist as an output. Synthesis is iterative process until the
design constraints aremet. The primary design constraints are area, speed, and power.
If the design constraints are not met, then the resynthesis need to be carried out to
perform further optimization on the RTL design. After the optimization, if it has
observed that the constraints are not met, then it becomes compulsory to modify
RTL code or tweak the micro-architecture. The synthesis tool generates the area,
speed, and power reports, and gate-level netlist as an output.

The timing verification is carried out by using the gate-level netlist, and this phase
is useful to find the presynthesis and post-synthesis simulation mismatches.

The prelayout timing analysis is also important phase to fix the setup violations
in the design. The hold violations can be fixed during later stage of the design cycle
during post-layout timing analysis.

2.2.4 Physical Design and Verification

It involves the floor-planning of design, power planning, place and route, clock tree
synthesis, post-layout verification, static timing analysis, and generation of GDSII
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for an ASIC design. This phase is not discussed in this book. The objective of the
remaining chapter is to have discussion on the SOC architecture, micro-architecture,
RTL coding, synthesis, and the SOC prototyping using FPGA.

2.2.5 Prototype and Test

During this phase, the design prototype using FPGA can be validated and tested to
understand whether the design meets the required performance, timing, and func-
tionality. This phase is time-consuming milestone, and useful to reduce the overall
risks by early detection of bugs. As proof of concept is validated it can be used to
avoid respin of the complex ASIC/SOC designs.

2.3 SOC Prototyping and Challenges

In the present decade, most of the vendors have powerful FPGA architecture, and
the FPGAs are used for the emulation and prototyping. Following are few reasons
for the use of modern FPGAs for the prototyping

1. FPGA architecture: During emulation and prototyping, the FPGAs can result
into the high performance. Nowadays, the FPGAs have the hard processor cores
and high-speed interfaces. They can be used efficiently during prototyping.

2. Testing cost: For the ASIC the commercial testing is very expensive as compared
to FPGA. The high-density FPGA boards can be used to prototype the design
and for the emulation.

3. Verification goals: Finding out the bugs using simulator can work for the moder-
ate gate count designs, but for the complex designs, the robust verification using
application software can be the best choice. This can achieve the desired goals
and coverage.

4. Turnaround time: The emulation and prototyping phase reduces the overall
turnaround time. It reduces the overall risk for the ASIC designs.

As density of SOCs is very high, there are many challenges in the SOC prototyp-
ing. Few of the challenges are listed below:

1. Need of multiple FPGA: Most of the high-density SOCs needs to be prototyped
using multiple FPGAs. The architecture of the FPGA is vendor specific, and
even the EDA tool support is vendor specific and may not be effective always.
The quality of the partitioning the design into multiple FPGA determines the
emulation performance. Another important point is the cost-effectiveness and
need of the manpower during the prototyping. Real work needs to be in the area
of efficient design partitioning for the better performance using the available
FPGA resources and interfaces.
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2. RTL design for ASIC verses FPGA: The RTL coded for the ASIC does not
map easily on the target FPGA. The main reasons are

a. There is often difference between the operating frequency of the FPGA and
ASIC.

b. The clocking architecture and initialization logic is the real bottleneck.
c. IO interfaces and memory technology for the ASIC and FPGA may have

different architecture. Consider the flash used in the ASIC design, but FPGA
uses the DRAM.

d. The bus models are different for the ASIC and FPGA. If we compare ASIC
verses FPGA, then we can say that no tri-state logic inside FPGA.

e. For the ASIC, we need to have the features like debug, controllability, and
observability, and they lacks in the FPGA flow.

So during the RTL phase, it is always better practice to code the design for ASIC
and to understand the FPGA equivalent of the ASIC designs. During prototyping,
the gated clocks, clock, reset trees, and memories need to be mapped into FPGAs by
their FPGA equivalent.

3. Coverificationanduse of IPs: Themajor challenge is the availability of the IPs in
suitable form.Most of the time, the IPs are not available in the suitable RTL form.
Even to achieve the required speed, it is a requirement that the FPGA interfaces
to the simulators or C/C++ models should be design and user friendly, and the
availability of such interfaces having the high bandwidth is real bottleneck. Even
there is need of the custom interfaces and other communication models for the
third-party IPs.

4. IObottlenecks: The emulation speed is limited due to the available IOs and inter-
faces of the FPGA. The real bottleneck due to IO speed is during the collection
of large chunk of data while performing the functional simulation. Even while
applying the stimuli, it is essential to consider the speed of IOs and interfaces.

5. Partitioning: If the SOCs are partitioned in the better way, then also the com-
munication between the hardware and software using IO interfaces is the real
challenge. Bitstream generation while programming the multiple FPGA envi-
ronments is time-consuming task, and for the recompilation, it may take hours.

6. In-circuit emulation: In-circuit or in-environment emulation is one of the chal-
lenges. Due to the involvement of other systems in the environment, achieving
the real-time performance is the bottleneck if the emulated speed is lesser than
the target operational speed. Consider the real practical scenario where Ethernet
need to work at speed of 100Mbps then while prototyping, if the 10Mbps Ether-
net is clocked at 1/10th of the clock rate, then the desired speed can be achieved
in the practical system.

7. Clocking and reset network: Another challenge is the clock and reset network
as they are different in the actual system and emulated system.
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2.4 Important Takeaways and Further Discussions

1. FPGAs are used extensively during this decade for the prototyping and for the
emulation.

2. The emulation using FPGA can be cost-effective and efficient way to test the
functionality for the desired performance.

3. The high-end FPGAs from Xilinx and Intel can be used to prototype the SOC as
these FPGAs consist of the hard processor cores which operate on higher clock
frequency.

4. For SOC design and prototyping, the hardware and software partitioning can play
an important role, and the overhead of the communication between the hardware
and software can be reduced by using the pipelining and multitasking.

5. The IO interface bandwidth and multitasking features need to be incorporated
into the design to achieve the required design performance.

6. The hard processor IP cores can be used during prototyping if the SOC processor
core feature matches with the available IP core.

The next chapter focuses on the RTL design guidelines. Few important design
guidelines are discussed in the next chapter. The chapter is useful to understand
these guidelines and to use them while coding using Verilog.



Chapter 3
RTL Design Guidelines

The first integrated circuit was invented during the year 1958 at
Texas Instruments by Jack Kilby.

Abstract The design using Verilog constructs to achieve the better performance
should be the objective of the RTL design engineer. The RTL team needs to use
the RTL design guidelines while coding for efficient RTL. These guidelines can be
tweaking of the RTL to improve the design performance or use of other techniques
using Verilog constructs to improve the design performance. This chapter discusses
the important guidelines and practical considerations during RTL design.

Keywords RTL · Verilog · If-else case always posedge negedge · ASIC synthesis
FPGA synthesis · Multipliers · Pipelining · Multiple clock domain designs
Gray counters · Binary counters · Resource utilization · Resource sharing
Gated clocks · Register balancing · Logic duplication
Use of the design guidelines to improve the performance of the design can help
even during implementation stage. Most of the time we observe the need of the RTL
tweaks to improve the design performance. The following section discusses about
the general guidelines needs to be followed during the RTL design and the role of
RTL tweaking using Verilog constructs.

3.1 RTL Design Guidelines

Following are the guidelines used during the RTL design cycle:

1. While designing the combinational logic, use the blocking assignments.
2. Use the non-blocking assignments while designing the sequential logic.
3. Do not mix blocking and non-blocking assignments in the same always block!
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4. Avoid the combinational loops in the design as they are prone to oscillatory
behavior.

5. To avoid the simulation and synthesis mismatches use complete sensitivity list
by using always @ (*) or using the always @ (//required inputs, temporary
variables).

6. Remove the potential unintentional latches by using the default while using the
case construct or by incorporating all the case conditions in the case constructs.

7. While using the if-else, cover all the else conditions as missing else can infer
the latches in the design.

8. If the intention is to design the priority logic, thenuse the nested if-else construct.
9. To infer the parallel logic, use the case construct.
10. To avoid the glitches in the design, use the one-hot encoding FSMs.
11. Do not implement the FSM with the combination of the latches and registers.
12. Initialize unused FSM states using reset or by default statements.
13. Use the separate always block for the next state, state register, and output logic.
14. For Moore FSM, use always @ (current_state) while coding the RTL for the

output logic block and for the mealy machine use the always @ (current_state,
inputs).

15. Do not make the assignments to the same variable or output in the multiple
always block.

16. Create the separate modules for the functional blocks sensitive to the different
clocks.

17. Create the separate module at the top level for the multi-flop level or pulse
synchronizer and instantiate them while passing the data between two clock
domains.

18. Design the vendor independent RTL by using the inference.

3.2 RTL Design Practical Scenarios

The following section discusses the important scenarios during the RTL design and
the performance improvement techniques.

3.2.1 Parallel Versus Priority Logic

During the RTL design phase, it is important to visualize the synthesis outcome of
the RTL. For the moderate gate count ASIC/FPGA functional blocks, it is possible
to perceive the resources used for the design.

If the designers have years of experience and have worked on million or billion
gate count ASIC, then it is possible to visualize the synthesis outcome of the chip at
the higher level. But that is never the objective of the RTL designer.
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//Verilog code for 4:1 MUX using case

module mux_4to1 (d_in, sel_inq_out);

input[3:0] d_in;

input[1:0] sel_in;

output q_out;

reg q_out;

always@ (*)

begin
case(sel_in)

2’b00 :q_out = d_in[0];
2’b01 :q_out = d_in[1];
2’b10 :q_out = d_in[2];
2’b11 :q_out = d_in[3];

endcase

end

endmodule

1 The blocking assignments are 
used inside the always block. 

2 The Verilog blocking 
assignments are updated in 
the active queue.

3 The blocking assignments are 
used to design the 
combinational logic

4 The synthesis tool infers the 
4:1 MUX with parallel inputs 
for this example.

Example 3.1 Parallel combinational logic

Understanding of the logic inference can have added advantages. For example, the
parallelism in the design can improve the design performance, or use of the resource
sharing can reduce the area although it is specific to the design requirements.

Consider the Verilog code of 4:1 MUX using case statement, the case construct is
used inside the always block, and to infer the combinational logic blocking assign-
ments are used. As case construct is used, the output is assigned to one of the inputs
depending on the status of select lines. In this, all inputs have same priority. The
Verilog code is shown in Example 3.1.
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Fig. 3.1 Synthesis result of 4:1 MUX using case

The synthesis outcome is shown in Fig. 3.1 and as shown it infers 4:1 MUX with
four input lines and single output line. The select inputs are used to control the data
flow from one of the multiplexer inputs to output.

Most of the times we need to have the priority logic, and under such circum-
stances the ‘if-else’ statement can be used. As shown in Example 3.2 the 4:1 MUX is
described using nested if-else statement. Due to use of the if-else statement, it infers
the priority logic

Synthesis outcome is shown; d_in[0] has highest priority and d_in[3] has lowest
priority. The priority logic uses the additional logic to perform the decoding. As
shown the decoding logic controls the data transfer through the cascaded chain of
2:1 multiplexer (Example 3.2).

3.2.2 Synopsys full_case Directive

Consider the design of the 2:4 decoder having active high enable and active low out-
put. If the design is implemented using the case construct and all the case conditions
are not covered, then the pre-and post-synthesis simulation results differ. Consider
the Verilog code Example 3.3.

The //synopsysfull_case directive is used (Example 3.4), and then it gives infor-
mation to the synthesis tool. The directive gives information to the EDA tool as;
the case statement is fully defined and considers the output assignments for all the
unused case conditions as don’t care.

While using this directive, care should be taken; the reason being the presynthesis
and post-synthesis results may not be matched. The better option is without the uses
of this directive, cover all the case conditions.
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//Verilog code for priority 4:1 MUX
module mux_4to1 _priority (d_in, sel_inq_out);

input[3:0] d_in;

input[1:0] sel_in;

output q_out; 

reg q_out;

always@ (*)

begin
if (sel_in==2’b00)

q_out = d_in[0];

else if (sel_in==2’b01)

q-out = d_in [1];

else if (sel_in==2’b10)

q-out = d_in [2];

else

q-out = d_in [3];
end
endmodule

1 The blocking assignments are 
used inside the always block. 

2 The Verilog blocking 
assignments are updated in 
the active queue.

3 The blocking assignments are 
used to design the 
combinational logic

4 The synthesis tool infers the 
4:1 MUX with priority logic. 
The d_in[0] has highest 
priority and d_in[3] has lowest 
priority.

5 The priority logic is inferred 
due to nested if-else 

Example 3.2 Verilog code of priority MUX
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module decoder-2to4  ( y_out, i_in, en_in);

input [1:0]  i_in;

input en_in;

output[3:0]y_out;

reg [3:0] y_out;

always @ ( * )

begin

y_out = 4’h1;

case({en_i,a_in})

3’b1_00 :y_out = 4’b1110;
3’b1_01 :y_out = 4’b1101;
3’b1_10 :y_out = 4’b1011;
3’b1_11 :y_out = 4’b0111;

endcase

end

endmodule

In this en_in is not 
optimized by synthesis 
tool
This causes the pre-
synthesis and 
post_synthesis 
simulation matches. 

Example 3.3 Verilog code without full_case

3.2.3 Synopsys parallel_case Directive

Most of the timewe observe the overlapping case conditions which can result into the
priority logic under such circumstances; it is better to use the //synopsysparallel_case
directive. Consider Example 3.5.

The //synopsys parallel_case directive is used to give information to the synthesis
tool. The directive gives information as; all the case conditions should be tested in
parallel (Example 3.6).

While using this directive, care should be taken; the reason being most of the time
the presynthesis and post-synthesis results may not be matched.
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module decoder-2to4  ( y_out, i_in, en_in);

input [1:0]  i_in;

input en_in;

output [3:0]  y_out;

reg [3:0] y_out;

always@ ( * )

begin

y_out = 4’h1;

case ({en_i,a_in}) //synopsys_full_case

3’b1_00 :y_out = 4’b1110;

3’b1_01 :y_out = 4’b1101;

3’b1_10 :y_out = 4’b1011;

3’b1_11 :y_out = 4’b0111;

endcase

end

endmodule

In this en_in is  
optimized by synthesis 
tool and will be 
dangling
This causes the pre-
synthesis and 
post_synthesis 
simulation matches. 

Example 3.4 Verilog code using Synopsys full_case directive

3.2.4 Use of casex

It is recommended not to use the casex statement in the RTL coding. Instead of using
the casex, it is better to use the casez statement.

Using casex ‘x’ is treated as don’t care. The problem may occur while using the
casex statement when the input tested by casex construct is initialized to unknown
state. During the post-synthesis simulation, the ‘x’ is propagated to the gate-level
netlist as the condition is tested by the casex expression.

Consider the example of 2:4 decoder as shown Example 3.7.
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module encoder_4to2 ( y_out, i_in);

input [3:0]  i_in;

output [1:0]  y_out;

reg [1:0] y_out;

always @ ( * )

begin

y_out = 2’b00;

case (i_in)

4’b1??? : y_out = 2’b11;
4’b01?? : y_out =2’b10;

endcase

end

endmodule

In this en_in is not 
optimized by synthesis 
tool
This causes the pre-
synthesis and 
post_synthesis 
simulation matches. 

Example 3.5 Verilog code without parallel_case directive

3.2.5 Use of casez

It can be used while coding for the priority logic and decoding logic. It is recom-
mended to use the casez in the RTL design, but care should be taken for the tri-state
initialization (Example 3.8).

3.3 Grouping the Terms

To improve the design performance, the grouping can be used. This can be accom-
plished byusing the parenthesis. ConsiderExample 3.9 shownbelow. In this example,
the (a_in+b_in− c_in− d_in) result is assigned to y_out. Without the grouping, the
synthesis tool infers the cascaded logic consisting of the arithmetic logic elements.
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module encoder_4to2 ( y_out, i_in);

input [3:0]  i_in;

output [1:0]y_out;

reg [1:0] y_out;

always @ ( * )

begin

y_out = 2’b00;

case (i_in) //synopsys parallel_case

4’b1??? : y_out = 2’b11;

4’b01?? : y_out =2’b10;

endcase

end

endmodule

In this en_in is  
optimized by synthesis 
tool and will be 
dangling
This causes the pre-
synthesis and 
post_synthesis 
simulation matches. 

Example 3.6 Verilog code using Synopsys parallel_case directive

The logic inferred is shown in Fig. 3.2, as shown the logic inferred has three
adders and they are connected in cascade. In the simple term, it is priority logic and
the delay is n*tpd, where n �number of adders and tpd�propagation delay of the
adder.

The RTL description in Example 3.9 can be modified by the use of parenthesis.
The modified code is shown in Example 3.10 and it uses the expression as y_out�
(a_in+b_in) − (c_in+d_in).

The synthesis result is shown in Fig. 3.3 and it infers the parallel logic due to
use of the parenthesis. Due to use of the parenthesis, it infers two adders and one
subtractor. The subtraction operation is implemented using 2’s complement addition.
If the delay of every adder is 1 ns, then the overall propagation delay is 2 ns. This
technique is used to improve the design performance.
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module decoder-2to4  ( y_out, i_in, en_in);

input[1:0]  i_in;

input en_in;

output [3:0]  y_out;

reg [3:0] y_out;

always @ ( * )

begin

y_out = 4’h1;

casex({en_i,i_in}) 

3’b1_00 :y_out = 4’b1110;
3’b1_01 :y_out = 4’b1101;
3’b1_1? : y_out = 4’b1011;

endcase

end

endmodule

If enable input has 
glitch or the MSB of 
the i_in has glitches 
then the output 
during the pre and 
post synthesis 
simulation may be 
different 

Example 3.7 Verilog code using casex

3.4 Tri-State Buses and Logic

The tri-state has three values, logic ‘0’, logic ‘1’, and high impedance ‘z’. The tri-
state buses are used in the design to establish communication that is data transfer
with other functional blocks. More information about the buses and interfaces are
discussed in Chap. 6.

Example 3.11 describes the tri-state logic. It is recommended to use the tri-state
logic at the top level in the design. The tri-state is used to avoid the bus contentions.
Instead of using the tri-state logic, it is better idea to use the MUX-based logic with
the enables.

Figure 3.4 is outcome of the synthesis result for the tri-state logic, and the logic
can be used to pass the data when ‘enable_in’ is equal to logic ‘1’. For logic ‘0’
enable input, the output of tri-state logic is high impedance and it is potential free
contact.
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module decoder-2to4  ( y_out, i_in, en_in);

input [1:0]  i_in;

input en_in;

output [3:0]  y_out;

reg [3:0] y_out;

always @ ( * )

begin

y_out = 4’h1;

casez({en_i,i_in}) 

3’b1_00 :y_out = 4’b1110;
3’b1_01 :y_out = 4’b1101;
3’b1_1? : y_out = 4’b1011;

endcase

end

endmodule

The problem may 
occur if one of the 
inputs is initialized to 
high impendence 
state. 

Example 3.8 Verilog code using casez

3.5 Incomplete Sensitivity List

The incomplete sensitivity list infers the unintentional latches. The synthesis tool
ignores the sensitivity list and infers the combinational logic as XOR gate for Exam-
ple 3.12.

Consider Example 3.13 in this the required inputs aremissing in the sensitivity list
and under such circumstances, there is mismatch between the pre- and post-synthesis
simulation.

If the sensitivity list is missing, then the always block is locked during simulation
and it is like infinite looping. The synthesis tool infers the combinational logic XOR
gate (Example 3.14).

Better solution to avoid such type of scenarios is; to adapt the use of the coding
style described in Example 3.15
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// Verilog code without grouping

module logic_without_grouping ( a_in, b_in, c_in, d_in,y_out);

input [1:0] a_in,b_in,c_in,d_in;

output [1:0] y_out;

reg [1:0] y_out;

always@ (*) 

begin

y_out= a_in + b_in -c_in -d_in;

end

endmodule ‘always’ block is 
sensitive to changes 
on one of the input
On the event on one 
of the input;  ‘y_out’ is 
assigned as ‘a_in + 
b_in –c_in-d_in’
The design uses the 
blocking assignment.
This infers the 
cascaded logic.

Example 3.9 RTL description without grouping

Fig. 3.2 Synthesis result for the Verilog code without use of grouping

3.6 Sharing of Common Resources

In most of the practical design scenarios, the common resources can be shared by
using the fundamental concepts of logic design to achieve area optimization. For
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// Verilog code with grouping 

module logic_with_grouping ( a_in, b_in, c_in, d_in,y_out); 

input [1:0] a_in,b_in,c_in,d_in; 

output [1:0] y_out; 

reg [1:0] y_out; 

always@ (*)

begin

end

endmodule
The blocking 
assignments are used 
inside the always 
block. Due to grouping 
the logic infers the 
parallel adders at the 
input.  
The result of (a_in + 
b_in) –(c_in+d_in) is 
assigned to ‘y_out’ 

y_out=(a_in + b_in)–(c_in +d_in); 

Example 3.10 RTL description using grouping of the terms

Fig. 3.3 Synthesis result for Verilog code using parenthesis

example, if adders are used and consuming more area, then the area can be reduced
by sharing the common adders as resources. This technique plays important role in
the improvement of area by optimizing the required gate count (Example 3.16).
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// Verilog code for the tri state logic

module tri_state (a_in, enable_in,

input [7:0] a_in,
input enable_in  ; 
output [7:0] y_out ;

reg [7:0] y_out;

y_out);

always@(*)

begin 

if ( enable_in) 

y_out = a_in;

else

end 

endmodule 

The always block is 
sensitive to 
‘enable_in’, ‘a_in’.
The ‘y_out’ is assigned 
as  a_in  for enable_in 
=’1’
For enable_in =’0’ 
y_out is assigned as 
high impedance state. 

y_out  =8’bz; 

Example 3.11 Verilog code for tri-state logic

Fig. 3.4 Synthesis result for the tri-state logic

Instead of using more number of adders, it is better practice and choice to use
more number of multiplexers in the design. Consider the Verilog code described
in Example 3.16 for the truth Table 3.1. As shown the output needs to be assigned
depending on the status of the select input. For ‘sel_in�1’, the output ‘y_out’ is
assigned as ‘a_in+b_in’ and for the ‘sel_in�0’, an output ‘y_out’ is assigned as
‘c_in+d_in’.
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module combinational_logic  ( y_out, a_in,b_in);

input a_in;

input b_in;

output y_out;

reg y_out;

always @ ( a_in or b_in)

begin

y_out = a_in ^ b_in;

end

endmodule

Sensitivity list has all 
the required inputs 
There is no any 
mismatch between the 
pre and post synthesis 
simulation results. 

Example 3.12 Verilog code with complete sensitivity list

module combinational_logic  ( y_out, a_in,b_in);

input a_in;

input b_in;

output y_out;

reg y_out;

always @ (  b_in)

begin

y_out = a_in ^ b_in;

end

endmodule

Sensitivity list has 
missing input ‘a_in’ 
There is mismatch 
between the pre and 
post synthesis 
simulation results. 

Example 3.13 Verilog code with the incomplete sensitivity list

The synthesis result for the arithmetic logic without using the concept of resource
sharing is shown in Fig. 3.5. As shown in Fig. 3.5, the logic infers two adders and
single multiplexer. The adders are used in the data path to perform the addition. The
output of multiplexer is controlled by ‘sel_in’ input, and for the ‘sel_in’ input as
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module combinational_logic  ( y_out, a_in,b_in);

input a_in;

input b_in;

output y_out;

reg y_out;

always

begin

y_out = a_in ^ b_in;

end

endmodule

Sensitivity list is missing 
There is mismatch 
between the pre and 
post synthesis 
simulation results. 

Example 3.14 Verilog code with the missing sensitivity list

module combinational_logic  ( y_out, a_in,b_in);

input a_in;

input b_in;

output y_out;

reg y_out;

always @ ( * )

begin

y_out = a_in ^ b_in;

end

endmodule

always@(*) uses all the 
required inputs while 
simulating the design
The pre and post 
synthesis simulation 
results  the same 

Example 3.15 Verilog code recommended style

logic ‘1’, it generates an output which is addition of ‘a_in’, ‘b_in’. For the logic ‘0’
condition of ‘sel_in’, it generates an output as addition of ‘c_in’, ‘d_in’.

The inferred logic has issue, as both adders are performing operations at the
same time; and unnecessary the design has more power dissipation. The result after
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module resource_sharing (a_in,b_in,c_in,d_in,sel_in,y_out);

input [1:0] a_in,b_in,c_in,d_in; 

input sel_in; 

output [1:0]  y_out ;

reg [1:0]  y_out;

always @ (a_in, b_in, c_in, d_in, sel_in)

begin

if(sel_in) 

y_out=a_in +  b_in;

else

y_out=c_in +  d_in;end

endmodule

The always block is 
sensitive to all the
required inputs. 
if else is sequential 
construct and used 
inside the always. 
For true ‘sel_in’ 
condition the 
‘a_in+b_in’ is assigned 
to ‘y_out’. 
For false ‘sel_in’ 
condition the ‘c_in+d_in’ 
is assigned to ‘y_out’

Example 3.16 Verilog code for arithmetic logic without resource sharing

Table 3.1 Truth table for the arithmetic logic

sel_in y_out

0 c_in+d_in

1 a_in+b_in

Fig. 3.5 Synthesis result for the Verilog code without resource sharing

performing the additions waits at the input lines of multiplexers for the active select
input, and depending on the status of select line, the output is assigned.

So this kind of technique is less efficient and has more gate count and even has
more power dissipation. To overcome this limitation, the resource sharing can be
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Table 3.2 Truth table for the
arithmetic logic

sel_in sig_1 sig_2 y_out

0 c_in d_in c_in+d_in

1 a_in b_in a_in+b_in

used where the common resources can be shared by pushing the adders forward to
the multiplexers. So for this design using resouce sharing, more multiplexers are
used and less number of adders.

To have efficient resource sharing, push forward the common resources at the
output side and use the multiplexers at the input side. Table 3.2 gives information
about the strategy used for sharing the common resources.

By modification in the code, the resource sharing can be achieved. The modified
Verilog code is described in Example 3.17 and uses the temporary signals as ‘sig_1’
and ‘sig_2’.

For logic ‘0’ status on the select line ‘sel_in’, the ‘sig_1’ holds the ‘c_in’ input and
‘sig_2’ holds the ‘d_in’ input value. For logic ‘1’ status on the select line ‘sel_in’,
the ‘sig_1’ holds the ‘a_in’ input and ‘sig_2’ holds the ‘b_in’ input value.

The synthesis result for Example 3.17 is shown in Fig. 3.6
As shown in the figure, the logic is realized by using the single adder and twomul-

tiplexers. If the same scenario is considered for the multibit additions, then this type
of approach uses lesser area and improves the design performance due to execution
of one of the operation at a time.

3.7 Design for Multiple Clock Domain

The ASIC designs or design using FPGA can have single or multiple clocks. Most
of the time we observe that the single clock domain design does not have the issue
of data integrity or data convergence. But if the design has multiple clocks, then the
real issue is the data passing from one of the clock domains to another clock domain.
To avoid the metastability and the data integrity issues, the data can be passed from
clock domain one to clock domain two by using the two-stage or multistage-level
synchronizers.

Example 3.18 describes the multiple clock domain design scenario. But in prac-
tice, there can be separate design for clock domain one and clock domain two.
Instantiate the synchronizer block while passing data between the clock domains.

The synthesis result is shown in Fig. 3.7 and as shown while passing the data
from clock domain one to the clock domain two; two-level synchronizer is used. The
two-level synchronizer output is valid legal state, although the first flip-flop in the
second clock domain goes into the metastable state.
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module resource_sharing (a_in,b_in,c_in,d_in,sel_in,y_out);

input [1:0] a_in,b_in,c_in,d_in; 

input sel_in; 

output [1:0] y_out;

reg [1:0] y_out;

reg [1:0] sig_1,sig_2;

always @ (a_in, b_in, c_in, d_in, sel_in)

begin

if (sel_in)

begin
sig_1  =a_in ;
sig_2 = b_in;
end

else

begin
sig_1 = c_in ;
sig_2 = d_in;
end

end

always @  ( sig_1, sig_2)

begin
y_out = sig_1 + sig_2;
end

endmodule

always block is 
sensitive to  ‘a_in’, 
‘b_in’, ‘c_in’, ‘d_in’ 
and ‘sel_in’.  
if else is sequential 
statement and used
inside the always
For true ‘sel_in’ 
condition the input 
‘b_in’ is assigned to 
‘sig_2’ and input ‘a_in’ 
is assigned to ‘sig_1’. 
For false ‘sel_in’ 
condition the input 
‘d_in’ is assigned to 
‘sig_2’ and input ‘c_in’ 
is assigned to ‘sig_1’. 

Another always block 
is  sensitive to ‘sig_1’  
and ‘sig_2’. 
The blocking  
assignment  is used 
inside the always block  
and output ‘y_out’ is 
assigned to  addition of 
‘sig_1’ , ‘sig_2’

Example 3.17 Verilog code for the arithmetic logic using resource sharing

3.8 Ordering Temporary Variables

During the combinational logic design using always block, care should be taken for
the assignment of the temporary variable. Consider Example 3.19 in which the state-
ments inside the always blocks execute sequentially. As described before assigning,
the required new value to the temporary variable the temp_reg is used in the first
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Fig. 3.6 Synthesis result for the Verilog code using resource sharing

assignment. Under such circumstances, the simulator uses the previous latched value
for the temp_reg. This creates the pre-synthesis simulation and post-synthesis sim-
ulation mismatches.

The better way to avoid the pre-synthesis and post-synthesis simulation mis-
matches is by changing the order of the statements inside the always block. This will
yield into correct result (Example 3.20).

3.9 Gated Clocks

The clock network is hungry net (always toggles) in the design.Due to clock toggling,
the designhasmoredynamicpower dissipation.Thepower dissipation canbe reduced
by using the clock gating cells. The design using the clock gating concept is described
in Example 3.21. The synthesis result is shown in Fig. 3.8.

As shown in the synthesis outcome, the clock of the register is controlled by using
the ‘clock_gate’. The ‘clock_gate’ signal is generated by using AND logic. But such
type of gating strategy is prone to the glitches.

To avoid the glitches, it is recommended to use the clock gating cells. To infer the
clock gating, use the vendor-specific EDA tool directives. The ASIC clock gating
cells may not be functional equivalent of the FPGA clock gating strategies.

In such kind of scenarios, the tweaking of the RTL is mandatory, or use the
gated clock conversion while realizing the design using FPGA. The clock gating
conversions and tweaking are discussed in much more detail in Chaps. 9 and 12.

3.10 Clock Enables

The sequential design can have the additional enable signal. Depending on the enable
signal status, the input data can be transferred to the output. Example 3.22 describes
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//verilog code for the multiple clock domain design

module multi_clock_design ( a_in,b_in,clk_1,clk_2,y_out);

input a_in , b_in , clk_1, clk_2 ;

output y_out;

reg y_out;

reg sig_domain_1 , sig_domain_2 ;

always @  (posedge clk_1)

begin

sig_domain_1 <= a_in and b_in;

end

always @ (posedge clk_2)

begin

sig_domain_2 <= sig_domain_1;

y_out<= sig_domain_2;

end

endmodule

Two always blocks 
executes in parallel 
and they are triggered 
on the rising edge of 
clk_1 and clk_2 
respectively.  
Single NBA  in the first 
always block infers 
the single register 
whereas multiple 
NBAs  in other always 
block  infers the two 
registers.  

Example 3.18 Verilog code for multiple clock domains

the Verilog RTL having the enable input, and the synthesis result is shown in Fig. 3.9.

As shown in the synthesis outcome, the clock enable is generated and used in the
enable path of the flip-flop.

More guidelines related to the practical scenarios, and their use in the practical
SOC prototyping is discussed in Chap. 12.
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Fig. 3.7 Synthesis result for the Verilog RTL using multiple clocks

module combinational_logic  ( y_out, a_in,b_in, c_in);

input a_in;

input b_in;

input c_in;

output y_out;

reg y_out, tmp_reg;

always@ ( * )

begin

y_out = (a_in ^ b_in )&tmp_reg;

tmp_reg = ~c_in;

end

endmodule

always block has 
complete sensitivity 
list. 
The tmp_reg is used in 
the first statement 
inside always block 
and it uses the 
previous value.

Example 3.19 Verilog code with the improper ordering of temporary variables
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module combinational_logic  ( y_out, a_in,b_in, c_in);

input a_in;

input b_in;

input c_in;

output y_out;

reg y_out, tmp_reg;

always@ ( * )

begin

tmp_reg = ~c_in;

y_out = (a_in ^ b_in )&tmp_reg;

end

endmodule

Always block has 
complete sensitivity 
list. 
The tmp_reg is 
assigned first to not of 
c_in and then used in 
the second 
assignment. 

Example 3.20 Verilog code with the proper ordering of temporary variables
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module gated_clock (data_in,clock,load_en,y_out);

input data_in, clk, load_en, clock_en;

output y_out;

reg y_out;

wire clock_gate;

assign clock_gate  = (clk and clock_en);

always @  posedge clock_gate

begin

if(load_en) 

y_out<= data_in;

end

endmodule

Clock enable 
‘clock_en’signal is 
used to enable the 
clock.
The gated clock 
‘clock_gate’ is created 
by using ‘clock_en and 
clk’.
The always block is 
sensitive to the rising
edge of ‘clock_gate’  

For the rising edge of 
the ‘clock_gate’ the 
‘y_out’ is assigned as 
‘data_in’ provided 
that ‘load_en=’1’. 

Example 3.21 Verilog code for gated clock

Fig. 3.8 Synthesis result for Verilog RTL using clock gating
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module clock_enable (data_in, clk, load_en, clock_en,y_out);

input data_in;

input clk;

input load_en;

input clock_en;

output y_out;

reg y_out; 

reg clock_enable

always @ ( load_en, clock_en)

begin

clock_enable=load_en and clock_en; 

end

always @ (posedge clk)

begin

if (clock_enable) 

y_out<= data_in;

end

endmodule

The clock enable 
signal ‘clock_enable’ 
is generated by using 
AND of ‘load_en’, 
‘clock_en’
The always block is  
sensitive to rising 
edge of clock. 
If ‘clock-enable’ is 
logic ‘1’ and clk is 
rising edge then the 
‘data_in’ is passed to 
the output ‘y_out’

Example 3.22 Verilog code using clock enable

Fig. 3.9 Synthesis result for the Verilog RTL using clock enable
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3.11 Important Takeaways and Further Discussions

1. While coding the RTL, designer should use the design guidelines.
2. Use the optimization techniques to improve the area, speed, and power.
3. Use the synthesis tool features to optimize the design.
4. To improve the design performance, the design should have the clean and short

timing paths.
5. For priority checking, use the nested if-else constructs.
6. Use the case constructs to infer the parallel logic.
7. Use gated clock to reduce the dynamic power.
8. Have RTL with registered inputs and registered output.
9. Use the synchronizers while passing data between clock domains.
10. Use the clock enables to have the clean clock paths.
11. Have clean data and clock paths.
12. Gated clock implementation for the ASIC and FPGA is different, and hence

while implementing the prototype using FPGA, use the clock gating conver-
sions.

13. Use tri-state logic at the top level for the design.

This chapter has given us good understanding about the RTL design guidelines
using Verilog! The next chapter discusses the RTL design and verification. Even the
design and verification strategies for the complex designs are discussed in the next
chapter.



Chapter 4
RTL Design and Verification

The design and verification of large-density SOC consumes
almost around 80% of the overall product cycle time.

Abstract The chapter discusses about RTL design and verification using Verilog.
The RTL design and verification strategies are also discussed in this chapter. The
chapter even discusses about the FSM performance improvement strategies. The
chapter is useful to understand the role of the RTL design and verification engineer
and important concepts.

Keywords RTL · Verilog · Shift register · Edge detector · Priority checking
Moore machine ·Mealy machine · Performance improvement · Verification
Coverage · Verification plan · Test case · Corner case

4.1 RTL Design Strategy for SOC

For the complex SOC designs, the RTL design phase can consume almost around
10–15% of the design time. The design can be partitioned into themultiple functional
blocks, and by using the divide and conquer method, RTL can be coded. For such
type of the design, the RTL can be overall integration of the functional-proven IPs,
glue, and associated logic with the test and debug logic. The care should be taken by
the RTL team to use the following general guidelines as references:

1. Use reference document as the architecture and micro-architecture of the SOC.
2. Understand the functional block interdependability with the other design blocks.
3. As a team member, try to have the clarity of the functional dependencies and the

external interfaces.
4. If you are the owner of the functional block and need to code the design using

Verilog, then use the RTL design guidelines.

© Springer Nature Singapore Pte Ltd. 2019
V. Taraate, Advanced HDL Synthesis and SOC Prototyping,
https://doi.org/10.1007/978-981-10-8776-9_4

51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8776-9_4&domain=pdf
https://doi.org/10.1007/978-981-10-8776-9_4


52 4 RTL Design and Verification

Processor
Memory

Controller

RAM

ROM

I2C

SPI

Timer

External 
Memory
Interface

PLL Oscillator

High 
Speed 

Bus
Interface

ADC

DAC

Video 
Processor

DMA
Controller

UARTBus Arbitration
and Control

Fig. 4.1 Complex SOC design

5. As a owner of the RTL functional block, try to refer the micro-architecture to
understand the functionality and implement the small-block-level designs using
Verilog.

6. Perform the basic verification for each sub-block to validate the functionality of
the design.

7. Integrate the sub-blocks at the top and use the test, debug, and tri-state at the top
level (Fig. 4.1).

4.2 RTL Verification Strategy for SOC

The goal is to verify the functional correctness of the design. For the small gate count
design, the basic testbench using Verilog can be used to report the bugs in the design.
For the complex designs, the process needs to be automated using the HVLs and
the self-checking layered testbenches. Depending on the use of the protocols, the
complexity of the layers in the testbenches can be increased to reach the coverage
goals.

The RTL verification for the complex design can consume almost around 65–70%
of the overall design cycle time, and the following can be done to achieve the coverage
goals.
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Fig. 4.2 Layered testbench

1. Have verification plan in place and kick-start verification concurrently with the
RTL design phase.

2. Have understanding of the block-level functionality to get the corner cases.
3. Create the test cases and randomize them to carry out the verification for the

block-level design.
4. Have the testbench architecture using driver, monitor, and scoreboards and

develop the automated sophisticated testbench.
5. Define the coverage goals such as functional, code, toggle, and constrained ran-

domized coverage at the block level and at the chip level.

The testbench should perform the following:

1. Generate stimulus
2. Apply stimulus to the DUT
3. Capture the response
4. Check for the functional correctness
5. Track and measure progress against the overall verification goals

What need to be thought about the design inputs while randomizing?

1. Device configuration
2. Environment configuration
3. Input data
4. Protocol exceptions
5. Delays
6. Errors and violations

The layered testbench architecture is shown in Fig. 4.2.
The command layer has the driver which drives the command to the DUT, and the

monitor captures the transition of the signals and groups them together in the form
of the command. Consider bus write or read command in AHB. The assertions also
drive the DUT.
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Above the command layer, the functional layer in which the agent or transactor
drives the driver after receiving the high-level transaction such as DMA read and
write. Such type of transaction can be broken into multiple commands to drive the
driver.

To predict the result of the transactions, these commands are sent to the scoreboard
and the checker compares the commands from monitor with the scoreboard.

If we consider the H.264 encoder then to test for the multiple frame processing,
frame size, and type, these parameters can be configured by using the constrained
random values of these parameters. This is what we call as creating the scenario to
verify the particular functionality.

4.3 Few Design Scenarios

For moderate gate count designs, the RTL description is discussed in this section.

4.3.1 Shifting of the Data

The Verilog code of the serial-input and serial-output shift register is shown in
Example 4.1. As shown, the non-blocking assignments (NBAs) are used inside
always block. NBAs are used while describing the sequential logic design. The
synthesis outcome is serial-input and serial-output shift register having rising edge
of clock and active low asynchronous reset.

4.3.2 Synchronous Rising and Falling Edge Detection

Most of the time, we need to have the logic to detect the positive edge or negative
edge. The synchronous logic which operates on the clock edge and described in
Example 4.2 (Fig. 4.3).

4.3.3 Priority Checking

If most of the level-sensitive signals are arriving at a time and need to be sensed and
processed depending on the priority, then the priority encoders can be used. Consider
a practical scenario of the processor logic having four-level-sensitive interrupts and
priority need to be scheduled for them, and then the logic can be designed by using
nested if-else construct of Verilog.
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//Verilog RTL for the serial input serial output shift register

module shift_register (d_in, clk, reset_n, q_out);

input d_in;

input clk;

input reset_n;

output q_out;

reg q_out;

reg q1_out, q2_out;

always @ (posedge clk or negedge reset_n)

begin

if (~reset_n)

begin
q1_out <= 1’b0;
q2_out <= 1’b0;

q_out <=  1’b0;
end

else

begin
q1_out <= d_in;
q2_out <=q1_out;

q_out <=  q2_out;

end

endmodule

1 The non blocking assignments 
are used inside the always 
block. 

2 Due to use of non blocking 
assignments the logic inferred 
is serial input and serial output 
shift register. 

3 The synthesis tool infers the 
sequential logic with 
asynchronous reset. 

4 The logic inferred has three 
flip flops.

Example 4.1 Verilog code of serial-input and serial-output shift register
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//Synthesizable Verilog for the rising /falling edge detection

module edge_detection (d_in, clk, reset_n, q_out);

input d_in;

input clk;

input reset_n;

output q_out;

reg  tmp_q_out;

always @ (posedge clk or negedge reset_n)

begin

if(~reset_n) 

tmp_q_out <= 1’b0;

else

tmp_q_out <= d_in;
end

assign  q_out = tmp_q_out ^ d_in;

endmodule

Example 4.2 Verilog code for the rising and falling edge detector

Fig. 4.3 Synthesis result of
edge detector
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Table 4.1 Truth table of 4:2
priority encoder

INT3 INT2 INT1 INT0 y1_out y0_out

1 X X X 1 1

0 1 X X 1 0

0 0 1 X 0 1

0 0 0 1 0 0

0 0 0 0 0 0

Consider the Table 4.1, in which the input INT3 has highest priority and INT0
has lowest priority. Outputs of encoder are y1_out and y0_out (Table 4.1).

As shown in the above table, the level-sensitive input INT3 has highest priority
and INT0 has lowest priority. If the above table entries are observed carefully, then
we can see the output ‘00’ for two input sequences ‘0001’ and ‘0000’. If the output
of the encoder is given as input to another functional block, then it is very difficult
to understand whether an output of encoder stage is ‘00’ due to input ‘0001’ or due
to input sequence ‘0000’. Use the flag_out as additional output of encoder to detect
all inputs are equal to ‘0000’. If all the encoder inputs are having logic zero value,
then force flag_out to logic 1 otherwise flag_out should be logic 0.

The Verilog code is shown in Example 4.3 and its synthesis result is shown in
Fig. 4.4.

4.4 State Machines and Optimization

We need to have the finite state machine (FSM) controllers in the design to get the
better timing performance. The FSMs are used to implement the controllers, and
even they are used to implement the arbitrary counters and sequence detectors. The
performance of the FSMs is one of the important aspects to achieve the desired
performance of the overall design. The FSMs are of two types—Moore and Mealy.

4.4.1 Moore Machine

In the Moore machine, the output is function of the current state only. It needs to
wait for one clock cycle to change the output after input change (Fig. 4.5).
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//Synthesizable Verilog for4:2  priority encoder

module priority_encoder (INT, y_out, flag_out);

input [3:0] INT;

output [1:0] y_out;

output flag_out;

reg flag_out;

reg [1:0] y_out; 

always @ (*) 

begin
y_out = 2’b00;

flag_out = 1’b1;

if(INT[3]) begin

y_out = 2’b11; flag_out = 1’b0; end

else if(INT[2]) begin

y_out = 2’b10; flag_out = 1’b0; end

else if(INT[1]) begin

y_out = 2’b01; flag_out = 1’b0; end

else begin

y_out = 2’b00; flag_out = 1’b0; end

end 
end 

endmodule 

Example 4.3 Verilog code for 4:2 priority encoder

4.4.2 Mealy Machine

In the Mealy machine, the output is function of both the present input and current
state. Output changes immediately in the same clock cycle for the change in the input
(Fig. 4.6).
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Fig. 4.4 Synthesis result of 4:2 priority encoder

Fig. 4.5 Moore machine block diagram

Fig. 4.6 Mealy machine block diagram
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4.4.3 Moore Versus Mealy Machine

The differences between the Moore and Mealy machine is shown in Table 4.2.

How to improve the Performance of the FSMs?
To improve the performance of the FSMs, use the following techniques at the RTL
level.

1. Do not use single ‘always’ block to code the FSMs as it does not yield into the
efficient results.

2. To achieve the efficient synthesis for the FPGA/ASIC, use the multiple ‘always’
block. In practice, we can think of using

a. First always block for the next state logic
b. Second always block for the state register
c. Third always block for the output logic.

3. Use the blocking assignments inside the next state and output logic block as they
are combinational in nature.

4. Use non-blocking assignments inside the state register block as this block is
triggered on the active clock edge may be positive or negative.

5. Use the desired encoding method

a. Binary encoding needs n flip-flops for the 2n states
b. Gray encoding needs n flip-flops for the 2n states
c. One-hot encoding needs 2n flip-flops for the 2n states

6. To avoid the latch inference, use the default condition or cover all the case con-
ditions in the case construct.

7. Depending on the number of transitions in the state machine use the if-else
construct.

8. If area is not a bottleneck in the design for the clean timing uses one-hot encoding
FSMs.

Table 4.2 Moore Versus Mealy machine

Moore machine Mealy machine

The output is function of current state only The output is function of the current state and
changes in the input

The output is stable for one clock cycle Output may not be stable for one clock cycle as
it is function of the input and current state

Output is not prone to glitches or spikes Output is prone to glitches or spikes

STA is simple as the combinational paths are
shorter. High operating frequency as compared
to Mealy machine

STA is complex due to larger combinational
path between registers. Less operating
frequency as compared to Moore machine

More number of states as compared to Mealy
machine

At least one state lesser as compared to Moore
machine
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9. For glitch-free output, use the registered output concept to register all the outputs
for the clean timing.

4.5 RTL Design for Complex Designs

Imagine the complex design which consists of million or billion logic gates then the
RTL design phase is time-consuming and iterative process. Prior to the RTL design,
the design or product specifications need to be evolved based on the current need of
the market and end customers.

For example, consider the mobile SOC design; then, the features required for
mobile are high-speed processor, high-resolution display, keyboard, touchpad, inter-
nalmemory, antenna, and external interfaces such asBluetooth,USB,Wi-Fi function-
ality, memory controllers, power supply, clockingmanagement, camera andmechan-
ical assembly. By considering all these requirements, the design specifications are
evolved prior to the RTL design phase.

The detail technical and functional specifications are captured in the system
requirement and analysis document, and then the architecture of the design is cre-
ated by the team of experts. During this phase, the design is partitioned into multiple
blocks (can be called as initial floorplan of the chip). For example, analog blocks,
digital blocks, memories, IP, video and audio processing functionality, and processor
cores.

By considering all these; architecture evolves for the complex design and it is
the block-level representation of the design. The micro-architecture of the design is
always evolved from the architecture document, and during this phase the functional
and timing details for each block are captured at the high level.

For the complex SOC designs depending on the requirements, the RTL design
team can code the RTL for each functional block.

The functional verification can be carried out after the RTL design phase. But
for the complex designs, the functional verification and RTL design phase can kick-
start concurrently. Almost around 70% of the design cycle time and efforts are spent
during the verification stage.

4.6 RTL Design at Top Level

The RTL design at the top level can be visualized as the integration of the number
of functional blocks. As shown in Fig. 4.7 the design has the different functional
blocks and the design is partitioned by keeping in mind the functionality of the
design, interfaces, and hardware/software requirements. The RTL top module uses
the instantiation of such functional blocks. For every RTL block, the area, speed, and
power constraints need to be specified and finally at the top level the constraints are
specified.
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Fig. 4.7 RTL at top level

The synthesis and design constraints are discussed in Chap. 9. The subsequent
chapters discuss about the RTL design for the SOCs and the RTL verification.

4.7 Important Takeaways and Further Discussion

The following are the important points to summarize this chapter.

1. Use the architecture and micro-architecture document while coding using Ver-
ilog.

2. Use the RTL design guidelines.
3. Have understanding of the functionality of the design and their interfaces with

the external blocks.
4. Use the tri-state, debug, and test logic at top level.
5. Use the synchronizers to pass the data between the multiple clock domains.
6. Use the divide and conquer approach for the large-density SOC blocks.
7. If IPs are used in the design, thenunderstand the interfaces andhave thewrappers

for the connectivity.
8. Define the coverage goals for the constrained random verification.
9. Use the layered testbench and monitor the desired coverage.
10. Have the verification plan and test case generation at the block level and at the

chip level.

The next chapter focuses on the architecture and micro-architecture evolution and
design of the processor. The chapter is useful to understand how the large-density
designs can be partitioned into the multiple functional blocks and how to think about
the performance improvement strategies at the architecture level.



Chapter 5
Processor Cores and Architecture Design

The architecture and micro-architecture document plays the
important role during the design phase.

Abstract The chapter describes the techniques to design the architecture andmicro-
architecture for the processor. The case study is created to develop the thought process
to evolve the architecture of the pipelined processor. Most of the times, we need to
have the processors in the SOC designs. For the complex designs, the processor IP
cores can be used. The chapter’s main objective is to develop the thought process
of the engineers while sketching the architectures and micro-architectures for the
processors. This can be helpful to design the products to implement and new ideas.
The chapter is useful to understand the hard IP cores during SOC prototyping.

Keywords Processor · Data rate · Latency · Throughput · Pipelining · Bus · Ports
Speed · Memory · SOC · Architecture · Micro-architecture
Performance improvement

5.1 Processor Architectures and Basic Parameters

This section discusses the important parameters such as processor speed, clock rate,
IO bandwidth, and multitasking.

5.1.1 Processor and Processor Core

If we recall the history of the processor evolution, then we can notice that Intel
launched a commercial processor 8080 during April 1974. It had non multiplexed
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bus with separate address and data lines. Address bus was 16 bit wide, and data bus
was 8 bit wide. The package used for this commercial processor was 40-pin DIP, and
the clock frequency was 2 MHz.

So if we consider the evolution of the processors, then the bus bandwidth, speed
to achieve the concurrent execution plays an important role in the design of any SOC.
During almost past four decades, the electronic system design usingmicroprocessors
has become the integral part of the embedded systems product development cycle to
develop the innovative embedded systems. Use of the processor cores in the design
reduces other components as thousands of transistors are placed on small silicon
area to perform the required operations. With the evolution of the new algorithms
and design techniques, the cost of the processor has reduced drastically and even the
moderate functionality processors are available with less than 1$ cost.

Figure 5.1 gives information about the 35 years of trend in the microprocessor
design.

As shown in Fig. 5.1, the transistor count in thousands has increased exponentially
from year 1975 to 2015 and even increasing further. Even the frequency of the
processor during year 1975–1980 was less than 10 MHz, and during year 2015, the
operating frequency of processor is almost few GHz.

Modern design during this decade is complex and dominated by the processor
architecture. The companies like Intel, AMD, TI have the sophisticated processors
with required functionality, internal memory, IO interfaces, and high-speed network
interfaces. Even the processor has the flexible architectures to perform the complex
floating point operations.

Effectively, the performance of the system is dependent on the performance of
the processor. One of the techniques to improve the performance of the processor is
by increasing the clock rate. If we recall year 1974, then the Intel 8080 speed was

Fig. 5.1 Microprocessor trends
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2 MHz, and during 1978, Intel 8086 speed was 10 MHz. So there was five times
improvement in the speed during shorter span!

During year 1984, Intel launched 80386 processor which had speed of 25 MHz,
and the Pentium II processor was launched by Intel during year 1994 which had
speed of 266 MHz. As discussed, the speed of the modern processor is few GHz.

Another important factor in the designof the processor is datawidth andbandwidth
of buses. As buses widened for each evolution, it has become easy to move the large
amount of the data during each clock cycle. If we compare the Intel 16-bit processor
8086 with 80386, then the 8086 processor had 16 bit of data bus and 80386 had 32
bit of the data bus. Figure 5.2 shows the architecture of the SOC consisting of the

1. RAM
2. ROM
3. Processor
4. Serial IO
5. The general purpose functional logic

Using the SOC, the additional logic functionality can be interfaced using the
programmable features.

During these days, the moderate gate count SOCs are available with little cost
(may be around few $). Another way to improve the performance of processor is by
adding more buses as the shared bus performance is always lower as compared to
the performance of multiple buses in the design.

If we consider the Intel Pentium II architecture, then it has separate cachememory
bus. The processor can perform simultaneously two operations using main bus and
cache memory bus.

Processor RAM

ROM 

 General 
purpose IO 
interfaces  

Bus 
Interface 
logic 

Timers 
and 
counters

Serial 
Interfaces 

Clock and 
reset 
networks

Fig. 5.2 Moderate gate count SOC
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The impact of adding more number of buses in the processor architecture is on
the pin count of the processor. So if we consider the evolution of processor, then in
the past four decades the processor pin count has increased. Even as clock rate has
increased over the period of time, it has impact on the power. So we can conclude
that the processor power and energy density have increased exponentially in the past
four decades.

As shown in Fig. 5.3, the performance of the processor can be increased by adding
more number of buses. The performance enhancement technique such as use of high-
bandwidth IO, buses, high clock rate are recommended in the design of SOC.

In the design of the processors, the additional pins means the higher cost of
package and higher cost during testing. But in the SOC designs, the more number of
pins costs nothing but they can incur the additional routing efforts. But once they are
routed, then the additional pins does not add the significant cost of the chip. In the
similar way, more number of buses cannot incur more cost but improves the design
performance.

As shown in Fig. 5.3, the microprocessor core has more number of buses. The
main bus communicateswithmicroprocessor core and other buses communicatewith
the local instruction and data memories. There are additional buses to communicate
with the instruction and data memory. The local bus shown is used to communicate
with the high-bandwidth peripherals.

Due to use of these buses, the load/store of the data and instruction fetching
can happen simultaneously. In addition to this, the cache controller can operate
independently.

Fig. 5.3 SOC architecture with multiple buses
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5.1.2 IO Bandwidth and Clock Rate

If single processor is used in the design, then the IO bandwidth is fixed, but if
processor core is designed for the SOC application, then it is possible to control the
IO bandwidth. Due to use of multiple buses in the processor core, it is possible to
improve the IO bandwidth and it is also possible to improve the data rate for high-
speed data transfer. Concurrent IO data transfer can improve the design performance.

While architecting the SOC, the architect should think about the performance
criteria in terms of area, speed, and power. If the architecture is designed using
multiple buses operating at lower clock rate, then the power requirement will be
less. But if the architecture uses the shared buses at higher clock rate, then the power
requirement is more. So always there is trade-off between the area, speed, and power.
It is always best practice to achieve the desired performance at lower clock rate. But
if it is required, then it is essential to use the processor at higher clock rate.

5.1.3 Multitasking and Processor Clock Rate

To improve the performance of the processor core, it is good practice to have the
architecture withmultitasking features. The basic technique to achieve themultitask-
ing is by adding more queues in the design so that multitasking environment can be
used to accomplish the task in specific time. Even multitasking can be achieved by
increasing the clock rate of the processor. More the clock frequency indicates more
number of operations performed concurrently.

So if we consider the single processor architecture where shared bus is commu-
nicating with the memories or IOs at higher clock rate, then the drawback is more
power and additional overheads on the processor. As compared to this, it is better
practice to use the fast and slow buses in the design (Fig. 5.4).

5.2 Processor Functionality and the Architecture Design

Let us consider the 16-bit or 32-bit configurable processor core. The efficient archi-
tecture and RTL design for any SOC application is not only useful to improve the
reliability of the processor, but also improves the overall performance in terms of
area, speed, and power. The primary target in such kind of designs is to achieve
the higher performance at the lower clock rates. As discussed earlier, we will use
the Verilog to code the RTL. The processor design should have the feature of pro-
grammability, and it is better to have fewer instructions. The major risk in such type
of designs is due to the changes in the specifications and functionality change to sup-
port the current market trends. Under such circumstances, the architecture should be
designed to cope up these kinds of changes.



68 5 Processor Cores and Architecture Design

Processor I 
RAM

ROM 

Timers 

Fast and 
slow 
peripheral 
Buses

Processor 
II

General 
purpose 
IO 
interfaces

Serial 
Interfaces 

Clock and 
reset 
networks

Bus
Arbiters

Memory 
controllers

Fig. 5.4 SOC with multitasking features

Let us think what the processor core should have?

1. Flexible architecture: The architecture should be flexible enough to accom-
modate the changes during the design and implementation cycle. To have the
better performance, if I wish to design the architecture, then, for the load or store
instructions only the external memory interface can be used. For all other types
of instructions, the inbuilt logic should be used which reduces the delays and
improves the speed of the processor. External communication overheads should
be as less as possible. This improves overall efficiency of the processor.

2. Pipelining feature: To improve the design throughput, the processor core should
have the pipelined control logic. Depending on the requirements, the design
should use the multistage pipelining. Special attention needs to be given to add
the pipelined controlled stages in the design. If we consider the Intel processors
and ARM processors, then the architectures have the multistage pipelining using
the internal data and instruction queues.

3. Internal storage: The processor core architecture should have the enough inter-
nal storage. Most of the time, we encounter the architecture which has more
number of general purpose registers. These general purpose registers can be
used during execution of the load and store instructions. This type of the inter-
nal registers can hold the operand information required during the instruction
execution.

4. Simple instruction set: For the improved throughput and performance of the
core, the instructions should be single cycle and that can be accomplished by
the pipelining. The better RTL implementation for the instructions used for the
data transfer, arithmetic–logical operations and branching can result in the better
performance.
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5. Operand definitions: The design should have the operands for the source and
destinations, and this kind of mechanism improves the control paths and their
timing.

6. External interfaces: The processor core should be such that it should have the
direct port interfaces, register interfaces, and interfaces for theFIFO to transfer the
larger amount of data. Even the high-speed bus interfaces and network interfaces
can be useful for the complex algorithms and data transfer.

7. Port registers for the data transfer: The performance of any processor is depen-
dent on the IO bandwidth and the interfaces used in the transfer of the data. If
any design needs multiple processor cores, then to transfer the data from one
of the processor core to another, we can think of using direct port connections.
Figure 5.5 shows the mechanism using the output and input registers.

The direct port connection to transfer the data from the processor #1 to processor
#2 is shown in Fig. 5.5. As shown, when the #1 processor completes the instruction
execution, then the result is stored in the output port register.

The contents of the output port register can be transferred to #2 processor and
stored in the input register of #2 processor. To perform the data transfer initially the
#1 processor executes the store instruction, and subsequently when the data need to
be read by #2 processor, the #2 processor can initiate the load data transaction.

Even the queuing of the data is required while transferring data between the
processors. As compared to the direct port interfaces, the high speed can be achieved.

Fig. 5.5 Direct port connections
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5.3 Processor Architecture and Micro-architecture

The architecture is the block-level representation for the design specifications. The
architecture is developed from the functional specification of the design. Consider
that for some application it is essential to design the architecture of the 16-bit pro-
cessor. What we need to think?

1. Application: The environment in which processor works. Depending on that
decide for the functionality. Even the market research to gather the processor
functionality and improvement in them can play an important role.

2. Operations: What are the operation to be supported by the processor

a. Arithmetic
b. Logical
c. Data transfer
d. Branching
e. IO control.

3. Size of data transfer: Size of the data bus.
4. Maximum addressable memory: What should be the maximum addressable

memory by the processor. Depending on that, extract the address bus count.
5. Multiplexing of the address and data buses: Provision for the multiplexed

buses to reduce the processor pin count.
6. Performance parameters:

a. Speed
b. Power
c. Die size
d. Latency for the data transfer
e. Data rate
f. Throughput
g. Pipelined stages.

7. Internal storage: The storage required

a. Internal registers for temporary storage
b. Internal memory RAM, ROM, FIFO buffers.

8. IO interfaces:

a. General purpose IO ports
b. Serial interfaces
c. Network interfaces
d. High-speed bus interfaces.

By using all these parameters, the block-level functionality can be documented
and shown in Fig. 5.6. It is the basic architecturewhich is the initial phase to kick-start
the design. In the practical SOC implementations, the architecture design team needs
to have the good amount of experience and the imagination. The team of experts can
create the architectures for the pipelined processor, and it is iterative process.
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Fig. 5.6 Processor architecture at basic level

The architecture document should consist of the information about the

1. Functionality of each block

a. ALU: 16-bit ALU to perform the arithmetic–logical operations
i. The instruction type: arithmetic, logical, data transfer.

2. The information about the internal storage

a. Register array
b. Internal memory.

3. The high-level information about the data flow

a. Fetch the instruction: Bus interface logic is used.
b. Decode the instruction: Decoding logic is used.
c. Execute the instruction: ALU and other associated logic depending on the

type of instruction.
d. Store the result.

i. In the internal register/memory
ii. External memory.

4. Information about the initialization/configuration and test registers and
logic: Test and debug logic for the initialization and configuration.

5. High-level information about the external interfaces (serial and parallel):
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Fig. 5.7 Multiplexed buses

a. Serial interfaces
b. General purpose IO interface.

6. Interrupts: Execution of immediate tasks

a. Number of interrupts (if more than one).

7. Information about the clock reset network.
8. Information about the constraints.
9. External world connectivity (for the external high-speed interfaces if any).
10. Information about the power supplies and voltage domains.

Pin count:
To get the more external pin visibility, the architecture document can have the details
of the width of each pin.

1. For example, the external memory interfaced to the processor is 1 MB; then, the
width of address bus should be 20 bit.

2. The size of the data bus is 16 bit. Size of each register is 16 bit. Size of the
memory pointers is 20 bit.

The pin count minimization: Use the multiplexed address data bus which is as
shown in Fig. 5.7.
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Table 5.1 External world connectivity

External_interface Pin_count Description

Data_bus 16 Bidirectional bus to transfer the data

Address_bus 20 For the IO or memory address

Data_control 1 For demultiplexing of the address data lines

R/Wb 1 For read and write. For read status on this line is logic ‘1’ and
for write status on this line is logic ‘0’

M/IOb 1 The output pin and logic ‘1’ status indicates the memory
operation, and logic ‘0’ on this line indicates IO operation

Crystal_input 2 Crystal input pins

Serial_in 1 To connect serial-input device

Serial_out 1 To connect serial output device

INT 1 Level-sensitive interrupt to the processor

INTA 1 Interrupt acknowledge from the processor

Reset_n 1 Active low reset input

Table 5.1 gives information about the block interfaces with the external devices.
In addition to this, the processor should have the power supply connections. For

this discussion, it is ruled out.

5.3.1 Processor Micro-architecture

The micro-architecture for the processor is the sub-block-level representation of the
individual functional blocks. The micro-architecture should give information about
the high-level logic requirement for the individual functional blocks and their timing
and interface details. The following section elaborates this in much more detail. For
the high-density functional blocks, it may be difficult task, but the micro-architecture
evolution is helpful during the RTL design, verification, and implementation phases.

5.3.1.1 ALU

It performs the arithmetic and logical operations and operates on the two operands.
What should we think while developing the micro-architecture for the ALU?

1. Size of the operand.
2. Is it allow the pipelined execution of the instructions? If not, the single-cycle

execution is possible for which type of instructions.
3. How many logical instructions and arithmetic instructions it supports?
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Fig. 5.8 ALU micro-architecture

4. What kind of the status/initialization information is required to perform the oper-
ations?

5. Whether it generates information about the status as overflow, zero result, etc.?

By using this thought process, themicro-architecture for this block can be evolved.
As shown in Fig. 5.8, the ALU block is partitioned into the arithmetic unit and

logical unit. The control logic takes decision to perform either arithmetic or logical
instructions depending on the status of the opcode decoding logic.

During the RTL design phase, this can play important role. The RTL engineer
can think about using the multiple blocks to partition the design. Whether the
design size is moderate or complex, this can give the better clarity about the
use of the HDL constructs to execute only one instruction at a time.

1. Interblock dependability: Have a thought process about the interblock depend-
ability and high-level timing. Consider the following:

a. The instruction decoding should generate the op_code for the instruction.
b. The operand_1 and operand_2 need to be fetched.

Table 5.2 gives information about the signals for this block.
Risk: The single-cycle execution is possible for the addition, subtraction, logical

instructions. The risk is the multiplication and division algorithms. It requires the
extra feature and pipelined support.
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Table 5.2 ALU signal connectivity at top level

signal_name Width Description Direction

clk 1 Common clock signal Input

reset_n 1 Active low asynchronous reset Input

operand_1 16 Operand 1 Input

operand_2 16 Operand 2 Input

op_code 4 4 bit for the 16 instructions Input

result_alu 16 16-bit output from ALU Output

Flag_out 1 To indicate the overflow Output

5.3.1.2 Serial IO Interface

The serial devices can communicate with the processor using serial input and output
line. To get the sub-block-level understanding, we can think of:

1. Maximum serial IO data rate.
2. Maximum clock frequency of the serial IO versus processor clock speed.
3. How to segregate the data from serial input to get the required parallel data.
4. How to transfer the parallel data into serial form.

So at the high level, the logic can be developed using the bidirectional shift
registers.

As shown in Fig. 5.9, the bidirectional shift register is used to communicate with
the serial IO; the direction control logic depending on the IO instruction decides
about the data transfer to or from the processor.

During the RTL design phase, this is helpful to code the design using two
different procedure blocks. One can be used to sample the input data, and
other can be used to transfer the serial data. The care should be taken while
writing the RTL for the direction control. This type of logic uses the sequential
shift registers to sample or transfer the data.

The serial interface signal information is given in Table 5.3.

5.3.1.3 Internal Registers

The registers can be used to store the result or can act as operands. The micro-
architecture can be viewed as parallel-in parallel-out (PIPO) registers to have the
read and write control. Depending on the instruction type, the data can be transferred
or stored in these registers. Even the special purpose pointers can be of PIPO type.

What is the additional logic with these registers?
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Fig. 5.9 Serial IO micro-architecture

Table 5.3 Serial interface connectivity

signal_name Width Description Direction

clk 1 Common clock signal Input

reset_n 1 Active low asynchronous reset Input

Serial_in 1 Serial input to the logic Input

Serial_out 1 Serial output to the logic Output

Data_inout 16 Bidirectional data bus to transfer the data Bidirectional

decode_serial_out 1 Input to the block from decoding logic Input

1. Register selection logic that is decoding logic.
2. The direction control using the signals from the control and timing unit.

As shown in Fig. 5.10, the sub-block representation has the decoding logic, mem-
ory, and internal memory pointers.

During the RTL design phase, this is helpful to code the design. Write the RTL
using different procedure blocks for the following:
1. PIPO logic for the registers and pointers
2. Direction control
3. Address decoding logic
4. Read/write and address pointer logic
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Fig. 5.10 Internal registers and pointers

The table gives information of the interfaces for this functional block (Table 5.4).

5.3.1.4 Interrupt Control

To develop the micro-architecture for such kind of the logic, the thought process can
be

1. The type of interrupts (edge triggered or level-sensitive)
2. What is the priority of the interrupts (in case of multiple hardware interrupts)
3. Enabling and disabling of interrupts and the logic
4. The vector location (branching address) logic (if not supported by any other

mechanism)

As shown in Fig. 5.11, the sub-block-level representation can sense the level or
edge, detects the priority, and processes the interrupt depending on the status of the
interrupt enable (Table 5.5).

Table 5.4 Interrupt control interface

signal_name Width Description Direction

clk 1 Common clock signal Input

reset_n 1 Asynchronous active low input Input

register_address 2 To select one of the register at a time Input

read/write 1 Input to indicate read or write Input

int_data_bus 16 Read or write data from/to the register Bidirectional

address_value 20 Input to the memory pointer Input

address_pointer 20 The external memory bus address Output
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Fig. 5.11 Interrupt control logic

Table 5.5 Internal registers and pointer interfaces

signal_name Width Description Direction

clk 1 Common clock signal Input

reset_n 1 Active low asynchronous input Input

register_address 2 To select one of the register at a time Input

int 1 Input to indicate the level-sensitive input
interrupt

Input

int_data_bus 16 Read or write data from/to the status register Bidirectional

inta 1 Interrupt acknowledge Output

address_pointer 20 The external memory bus address Output

During the RTL design phase, this is helpful to code the design. Write the RTL
using separate procedure blocks
1. Edge or level detection logic
2. Priority detection logic
3. Interrupt status and branching/scheduling of the interrupt logic.

5.3.1.5 Decoding and Control and Timing

To develop the micro-architecture for such kind of the logic, the thought process can
be
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1. What is the type of instruction and op-code decode?
2. What types of the internal signals need to be derived?
3. What type of the external control and timing signals need to be derived?
4. What should be the timing of the signals?

As shown in Fig. 5.12, the sub-block-level representation is shown and can fetch
the instruction, decode the instruction and the state machine controller can generate
the control and timing signals (Table 5.6).

During the RTL design phase, this is helpful to code the design. Write the RTL
using different procedure blocks
1. Fetch the opcode.
2. Create the state machine controller.
3. Implement the decoding logic.

Fig. 5.12 Decoding and control and timing signals

Table 5.6 Decoding and timing control logic

signal_name Width Description Direction

clk 1 Common clock signal Input

reset_n 1 Active low asynchronous reset Input

Instruction_code 4 The 4-bit operational code of the instruction Input

rd/wb 1 The output line to indicate the read
transaction for logic ‘1’ and write
transaction for logic ‘1’

Output

M/IOb 1 Logic ‘1’ on this line indicates operation
with memory and logic ‘0’ indicates IO
operation

Output
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Fig. 5.13 IO interface logic

Table 5.7 IO interface

signal_name width Description Direction

clk 1 Common clock signal Input

reset_n 1 Input

D15-D0 16 The 16-bit bidirectional bus Bidirectional

Port_1(D15- D0) 16 Bidirectional IO port Bidirectional

Port_2(D15- D0) 16 Bidirectional IO port Bidirectional

5.3.1.6 IO Interfaces

To develop the micro-architecture for such kind of the logic, the thought process can
be

1. The type of IO operation
2. Port register selection logic
3. Direction control and configuration registers

The logic is shown is Fig. 5.13 and the description of associated signals is given
in Table 5.7).

During the RTL design phase, this is helpful to code the design. Write the RTL
using different procedure blocks
1. Fetch the configuration and status information.
2. Implement the direction control using the configuration logic.
3. Design the port registers for the bidirectional communication.

If my design is complex or if I have product idea, then what to do?
For the complex billion gate design, the micro-architecture sketching is not feasible
according to the process explained in the above section. The team can think about
the following:
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1. Team of architect brainstorms and think about the functional blocks.
2. For complex design, find the hard or soft core IPs required. They can be open

source or licensed version.
3. Create the initial top-level floor plan for the design.
4. For each functional block

a. For IP used
i. Understand the functionality and timing information.
ii. Understand the interfaces.
iii. Understand about the configuration.

b. If the architecture is available
i. Check for the required modifications.
ii. Check for the interfaces and wrappers required.

c. If architecture of the block is not available
i. Use hardware and software partitioning.
ii. Sketch the block level representation.
iii. Sketch the micro-architecture.

d. Estimate the external IO interfaces and general purpose interfaces.
e. Have understanding of the latency, data rate, and throughput.
f. Clock and reset logic required.
g. Multiple voltage domain and power domains in the design.

5.4 RTL Design and Synthesis Strategies

The design of the processor can be efficiently achieved using the modular design
approach or the bottom-up approach. Have the design partitioning at the architecture
level, use the reference document as micro-architecture, and code the RTL for the

1. Top_RTL.v

a. ALU.v
b. Internal_memory.v
c. Bus_interface.v
d. Internal_registers.v
e. Interrupt_control.v
f. Timing_control.v

i. Timers_counter.v
g. Serial_IO_control.v

Use the synchronizers, tri-state logic, and clock reset network in the top block.
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5.4.1 Block-Level Design

The team members (RTL design, verification, synthesis, and STA team) can perform
the following

1. Code the efficient RTL for the each functional block.
2. Verify the design using the required tests.
3. Use the block-level constraints and synthesize the design.
4. Check whether the constraints can meet or not?
5. Perform the timing simulation and prelayout STA. Fix the setup time violations

using the RTL tweaks and architecture tweaks.

5.4.2 Top-Level Design

The team can perform the following tasks:

1. Create the Top.v using the instantiation and verify the design.
2. Check whether the coverage goals met or not?
3. Perform the design synthesis using top-level constraints.
4. Check whether the constraints met or not?
5. Perform the prelayout timing for the top.v.
6. Check for the timing violations and fix them using the necessary tweaks.

5.5 Design Scenarios

The objective of this section is to discuss the frequently encountered design scenarios
during the RTL design stage of the processor. Depending on the functional specifica-
tions and requirements, the designer can modify the RTL to realize the functionality.

5.5.1 Scenario 1: Instruction Set and ALU Design

ALU instructions and execution: The processor instruction set and the RTL coding.
Consider that the processor has the following arithmetic and logical instructions:

1. Transfer (a_in)
2. Addition without carry (a_in, b_in)
3. Addition with carry input (a_in, b_in, cin)
4. Subtract without borrow (a_in, b_in)
5. Subtract with borrow (a_in, b_in, cin)
6. Increment by 1 (a_in, 1)
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7. Decrement by 1 (a_in, 1)
8. OR (a_in, b_in)
9. XOR (a_in, b_in)
10. AND (a_in, b_in)
11. NOT (a_in)

Let us consider the RTL design for these instructions. If more instructions needs
to be supported, then use the multiple modules, that is, modular design approach

module alu_design (clk , reset_n ,op_code ,  a_in ,b_in,cin, y_out, cout);

input clk;
input reset_n;
input [3:0] op_code;
input [15:0] a_in,b_in;
input cin;
output reg cout;
output [15:0] y_out;
reg [15:0]  y_out;

always @(posedge clk or negedge reset_n)
begin

if (~reset_n)
{cout,y_out} = 0;

else

case (op_code)

4'b0000 : {cout, y_out }= {0,a_in};
4'b0001 : {cout, y_out }= a_in+b_in;
4'b0010 : {cout, y_out }= a_in+b_in+cin;
4'b0011 : {cout, y_out }= a_in -b_in;
4'b0100 : {cout, y_out }= a_in -b_in-cin;
4'b0101 : {cout, y_out }= a_in +1'b1;
4'b0110 : {cout, y_out }= a_in -1'b1;
4'b1000 : {cout, y_out }= {0, (a_in | b_in)};
4'b1001: {cout, y_out }= {0,(a_in  ^ b_in)};
4'b1010: {cout, y_out }= {0,(a_in  & b_in)};
4'b1011: {cout, y_out }= {0,~a_in } ;
default : {cout,y_out} = 0;

endcase

end

endmodule

Use of the registered 
input and registered 
output for the alu 
functionality 
Used case construct so 
that only one 
instruction is executed 
at a time.  
Enable the resource 
sharing options in the 
EDA tools.

Example 5.1 Synthesizable Verilog code for ALU using case



84 5 Processor Cores and Architecture Design

module alu_logic ( clk, reset_n,op_code,  a_in,b_in,cin, y_out, cout);

input clk;
input reset_n;
input [3:0] op_code;
input [15:0] a_in,b_in;
input cin;
output reg cout;
output [15:0] y_out;
reg [15:0]  y_out;

always @(posedge clk or negedge reset_n)

begin

if (~reset_n)
{cout,y_out} = 0;

else

if (op_code==4'b0000)
{cout, y_out }= {0,a_in};

else if (op_code==4'b0001)
{cout, y_out }= a_in+b_in;

else if (op_code==4'b0010)
{cout, y_out }= a_in+b_in+cin;

else if (op_code==4'b0011)
{cout, y_out }= a_in -b_in;

else if (op_code==4'b0100)
{cout, y_out }= a_in -b_in-cin;

else if (op_code==4'b0101)
{cout, y_out }= a_in +1'b1;

else if (op_code==4'b0110)
{cout, y_out }= a_in -1'b1;

Use of the registered 
input and registered 
output for the alu 
functionality 
Used if-else construct 
in the RTL.
Enable the resource 
sharing options in the 
EDA tools.

else if (op_code==4'b1000)
{cout, y_out }= a_in|b_in;

else if (op_code==4'b1001)
{cout, y_out }= a_in ^b_in;

else if (op_code==4'b1010)
{cout, y_out }= a_in & b_in;

Example 5.2 Synthesizable Verilog code using nested if-else
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else if (op_code==4'b1011)
{cout, y_out }=~ a_in;

else

{cout, y_out }=16'b0;

end

endmodule

Not recommended to 
use the if-else 
construct for such kind 
of designs as it infers 
priority logic. 

Example 5.2 (continued)

Fig. 5.14 Synthesis result for the ALU using case construct

Fig. 5.15 Simulation result of 16-bit ALU

for the better timing and synthesis results. Use the registered inputs and registered
outputs (Examples 5.1 and 5.2, Figs. 5.14 and 5.15).
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5.5.2 Scenario 2: Data Load and Shifting

They are used to load parallel data and to perform the right or left shift operation
(Table 5.8).

The Verilog code is described in Example 5.3 (Fig. 5.16).

Table 5.8 Shift operations

Select code Operation

00 Load parallel data

01 Right shift by 1 bit

10 Left shift by 1 bit

11 Hold the data

module shift_register ( clk, reset_n, op_code,  data_out, data_in, MSB_out, LSB_out);

input clk;
input reset_n;
input [1:0] op_code;
input [15:0] data_in;
output MSB_out, LSB_out;
output [15:0]data_out;
wire  [15:0]  data_out;
reg [15:0]  tmp_data_out;

always @(posedge clk or negedge reset_n)

begin
if (~reset_n)
tmp_data_out<= 16'b0;
else

case (op_code) 
2'b00 : tmp_data_out <= data_in;
2'b01 : tmp_data_out <= {data_in[0], data_in[15:1]};
2'b10: tmp_data_out <= {data_in[14:0], data_in[15]};
2'b11 : tmp_data_out <= tmp_data_out;
endcase

end

assign data_out = tmp_data_out;
assign MSB_out = tmp_data_out[15];
assign LSB_out=tmp_data_out[0];
endmodule

Depending on the 
operational code 
status the output of 
shift register is 
generated.
The parallel output is 
designated as 
data_out
Serial output for the 
left shift operation is 
taken from MSB_out
Serial output for the 
right shift operation 
is taken from the 
LSB_out

Example 5.3 Synthesizable Verilog code for shift register
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Fig. 5.16 Synthesis result of shift_register

5.5.3 Scenario 3: Parallel Data Load

The parallel-input and parallel-output register is used to fetch the parallel data and
generate the parallel data output depending on the status of enable input. Use the
similar kind of strategy for the instruction register and address register. The Verilog
code is described in Example 5.4 (Fig. 5.17).

5.5.4 Scenario 4: Serial Data Processing

The serial-input serial-output register is used to establish serial data communication.
The Verilog code is described in Example 5.5 (Fig. 5.18).

5.5.5 Scenario 5: Program Counter

The program counter used to point the next instruction while executing the present
instruction. The program counter increment logic is described using Example 5.6
(Fig. 5.19).

5.5.6 Scenario 6: Register Files

The register files can be used to store the data. The Verilog code is described in
Example 5.7 (Fig. 5.20).



88 5 Processor Cores and Architecture Design

module paralle_in_parallel_out ( clk, reset_n, enable_in,  data_in, data_out);

input clk;

input reset_n;

input enable_in;

input [15:0] data_in;

output [15:0]data_out;

reg [15:0]  data_out;

always @(posedge clk or negedge reset_n)

begin

if (~reset_n)

data_out<= 16'b0;

else if (enable_in)

data_out<=data_in;

end

endmodule

For enable_in=’1’ 
the parallel data_in 
is loaded in the 
register. 
If enable_in=’0’ it 
holds the previous 
data.
The logic generates 
the 16 bit register 
sensitive to rising 
edge of clock with 
multiplexer logic to 
sample the data. 

Example 5.4 Synthesizable Verilog code for the parallel data processing

Fig. 5.17 Synthesis result for parallel-input parallel-output register
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module serial_in_serial_out ( clk, reset_n, enable_in, data_in, data_out);

input clk;

input reset_n;

input enable_in;

input [15:0] data_in;

output data_out;

wire data_out;

reg [15:0]  tmp_data_out;

always @(posedge clk or negedge reset_n)
begin

if (~reset_n)

tmp_data_out<= 16'b0;

else if (enable_in)

tmp_data_out<={data_in[0], data_in[15:1]};

end

assign data_out = tmp_data_out[0];

For enable_in=’1’ 
the parallel data_in 
is loaded in the 
register. 
If enable_in=’0’ it 
holds the previous 
data.
The logic generates 
the 16 bit register 
sensitive to rising 
edge of clock with 
multiplexer logic to 
sample the data. 

Example 5.5 Synthesizable Verilog code for the serial data processing

Fig. 5.18 Synthesis result of serial-input serial-output shift register

5.6 Performance Improvement

The processor performance can be improved at the architecture level by adding
the pipelined stages and by improving the clock rate and IO bandwidth as discussed.
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module program_counter  ( clk, reset_n,  pc_in,load_pc, incr_pc,  pc);

parameter size=16;

input clk;

input reset_n;

input load_pc;

input incr_pc;

input [size-1:0] pc_in;

output [size-1:0] pc;

reg [size-1:0] pc_out;

always @(posedge clk or negedge reset_n)

begin

if (~reset_n)

pc_out<= 16'b0;

else if (load_pc)

pc_out<=pc_in;

else if(incr_pc)

pc_out<=pc_out+1;

end

assign pc=pc_out;

endmodule

For load_pc=’1’ the 
pc_in is loaded in 
the program 
counter.
For the incr_in =’1’ 
the program counter 
is incremented by 1
The logic generates 
the 16 bit register 
sensitive to rising 
edge of clock with 
multiplexer logic for 
the increment and 
the load.  

Example 5.6 Program counter synthesizable Verilog code

Consider the following four instructions which need to be executed in sequence:

Add reg0, reg1, reg7

Sub reg2, reg3, reg6

Load 16 bit data, reg5

Store reg4,Memory_Loc

(reg0) + (reg1) � (reg7)

(reg2) − (reg3) � (reg6)

16bit data � (reg5)

(reg4) � (Memory_Loc)
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Fig. 5.19 Synthesis result for program counter

module register_file  ( clk, reset_n,  write_addr, write_en, data_in, read_addr, data_out);

parameter size=16;

parameter addr=4;

input clk;

input reset_n;

input [addr-1:0] write_addr, read_addr;

input write_en;

input [size-1:0] data_in;

output [size-1:0] data_out;

reg [size-1:0] reg_file [0 : addr-1];

always @(posedge clk or negedge reset_n)

begin

if (~reset_n)

reg_file [write_addr] <= 16'b0;

else if (write_en)

reg_file[write_addr] <= data_in;

//pc_out<=pc_out+1;

end

assign data_out=reg_file[read_addr];

endmodule

For write_en=’1’ the 
parallel data_in is 
loaded in the register 
file. 
Depending on the 
status of the 
read_addr the data 
stored in the register 
file is outputted on the 
data_out.  

Example 5.7 Register file synthesizable Verilog
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Fig. 5.20 Synthesis result of register file

Consider that each instruction needs to go through fetch, decode, execution, and
store result; then, without pipelining, it will take 4 clock cycles. That means for the
four instructions, it will take 16 clock cycles. Due to use of the pipelined control
logic, if four-stage pipelined is incorporated in the design, then it will reduce the
number of clock cycles and improve the performance of the design.

The Table 5.9 illustrates the execution of the four instructions.
As shown in Table 5.9 to store the result of the Add instruction, it takes four

clock cycles. But due to pipelining, the second instruction onwards it will utilize less
number of clock cycles. For the four instructions, the result is available in the 7 clock
cycles and that is s performance improvement by 8 clock cycles.

The pipelined stage using the registered outputs and inputs is as shown in Fig. 5.21.

5.6.1 How to Tweak the RTL to Improve the Design
Performance

Due to pipelining, the design performance can be improved. Commonly used tech-
niques to improve the design performance using the pipelining concept are register
balancing and register optimization. Depending on the requirement of the hierarchi-
cal designs or flattened design, these techniques can be used during the RTL design
and synthesis phase. The RTL can be tweaked by adding the pipelined stages; this
increases the latency for the design by improving the register-to-register path timing.
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Table 5.9 Instruction pipelining

Clock cycle Fetch Decode Execute Store result

I Add X X X

II Sub Add X X

III Load Sub Add X

IV Store Load Sub Add

Fetch
R
E
G 

R
E
G 

Decode
R
E
G

R
E
G 

Execute
R
E
G

R
E
G

Store 
R
E
G 

R
E
G 

Fig. 5.21 Pipelined stage

Fig. 5.22 Hard and soft processor cores on FPGA fabric

5.7 Use of Processors in SOC Prototyping

Most of the modern FPGAs use the hard processor cores. If you think about use of
the Xilinx or Intel FPGAs, then the ARM-based hard processor core architectures
are inbuilt in the FPGA. They can be used during the prototyping. For the details of
the Xilinx and Intel FPGA architectures, refer Chaps. 11, 12 and 15.

The soft and hard processor cores used in most of the complex designs work at
the speed of the 100 MHz and above. The prototype team can use the soft processor
cores running at high speed of 200–250 MHz if required. The hard processor cores
which are available on the FPGA fabric can run at the speed of the 100 MHz for
most of the available high-density FPGAs from Xilinx and Intel. The functionality
and timing of such cores decide the performance of the prototyping (Fig. 5.22).
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Table 5.10 Soft versus hard processor cores

Features Soft core Hard core

Flexible architecture Tweaking and addition of the
IP is very much possible. The
addition of the external
interface components is
possible with the soft IP cores

It is hard core, and the
architecture is fixed. The
addition of the external
components/IPs like ADC,
DAC is not possible. Using the
add-on boards or the design
partitioning and interfacing,
this can be accomplished

Operating frequency High (around 250–300 MHz) Moderate (around
100–150 MHz)

Logic density Moderate High density

The visibility to internal logic Access of the internal signals
using the logic analyzer or
oscilloscope during prototype
is possible

Access to the internal signal
transition is not possible. User
needs to use the external
interfaces

Testing of the cores The soft processor cores can
be tested due to visibility of
signals and as they are
available in the form of the
netlist

The hard processor core
testing needs to be carried out
using the stand-alone platform
to verify the interface details
and timing. Visibility to the
internal signal is limited

Cost High Moderate

Power domains Not efficient Low-power architectures

Hardware software
partitioning

The hardware software
partitioning is possible using
the soft processor cores

The hardware is fixed; hence,
the software wrappers can be
added to establish
communication

Table 5.10 illustrates the difference between the processor hard and soft cores.

5.8 Important Takeaways and the Further Discussions

As discussed in this chapter, the following are few important points.

1. The processor cores are extensively used in the modern FPGAs.
2. The speed, data rate, and IO bandwidth are few of the important factors while

developing the processor logic.
3. The architecture and micro-architecture of the design document should be used

during the RTL design verification and implementation phase.
4. To improve the processor performance, use the pipelining by adding the pipelined

control logic.
5. The pipelining stages can be used to improve the performance of the design.
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6. The register balancing or register optimization can also be used to improve the
design performance.

7. In the soft processor cores, the logic visibility during debug is higher as compared
to that in the hard processor cores.

8. The multiprocessor architecture can be used in the design to improve the overall
design features as it enables the multitasking.

The next chapter discusses the high-speed buses and protocols which is useful to
understand the bidirectional buses, bus arbitration, and protocols.



Chapter 6
Buses and Protocols in SOC Designs

The SOC performance is dependent on the speed of the buses
and IO delays.

Abstract The performance of the SOC is highly dependent on the bus architecture
and arbitration schemes. This chapter discusses the few protocols used in the design
and their use. The data transfer techniques between the SOC elements are discussed
in this chapter. Even this chapter discusses bus architecture and data transfer schemes.
The chapter is useful to understand the I2C, SPI, AHB bus protocols.

Keywords FIFO · SPI · I2C · UART · USART · AHB · Single bus
Multiple bus architecture · Data rate · Latency · Throughput · Register
In all the SOCdesigns, we experience the use of the buses and the protocols. To trans-
fer the data between the various SOC components, we use the FIFO, buffers, buses.
The architecture and performance of such buses decides the overall performance of
the design. The following section elaborates the need of the buses, protocols, and the
high-speed architectures for the SOC designs.

6.1 Data Transfer Schemes

There are various mechanisms by using them the data can be exchanged between
two computational elements. Following is the list of few mechanisms used to pass
the data

1. Buses
2. Shared memory
3. FIFO
4. Write/read registers
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5. On-chip network
6. Bus protocols

Let us try to discuss these mechanisms to understand the pros and cons.

1. Buses: As discussed earlier, the buses are used to transfer the data between
two processing elements. The multiple bus configurations in the design of SOC
can improve the overall design performance. Instead of using the single bus
with higher clock frequency, it is always advisable to use the multiple buses to
communicate with the faster and slower SOC processing elements. During the
architecture evolution, we need to think about using the fast processor bus and
slow peripheral bus.

2. Shared Memories: To transfer the large amount of data between the SOC pro-
cessing elements, we can think of using the shared and dual-port memories.
Consider the H.264 encoder, in such kind of the design the data packets or the
video frames need to be transferred between two processing elements, and hence,
it is essential to have shared memories.

3. FIFO: For interprocessor communication, one of the communication mecha-
nisms is FIFO. During the design of the architecture, we can think of using the
unidirectional FIFOs to transfer the data between the SOC processing elements.
Depending on the data size, the FIFO depth can be chosen and it is not com-
pulsory that the depth of the FIFOs should be same. But in the mechanism, the
additional logic required to report the FIFO empty and FIFO full to the respective
computational plane.

4. Read/Write Registers: If the small amount of the data need to be exchanged
between different processors, then it is advisable to use read and write configu-
ration registers. This mechanism is too simple as compared to use of the shared
memories, FIFOs. So the better way is to use the point-to-point contact between
the registers and should have the configuration and general purpose registers to
perform the read or write operations.

5. On-Chip Network: The better mechanism for the large chunk of data transfer is
to use the on-chip network. There is extensive amount of efforts to improve the
on-chip network use in the design of SOC. This is out of scope for the discussion.

6. Bus Protocols: The bus protocols can be used to transfer the data between to
processors or buses. The serial protocols like SPI, I2C, USB can be used to
exchange the data in the form of packets from one of the computational elements
to other and vice versa. The AHB, APB buses can be used to transfer the data
between twocomputation elements.Asprotocols have the predefined architecture
and the functionality, they can have the added advantage in the design.

The subsequent section discusses the design and implementation of the bus pro-
tocols, RTL design and verification and challenges in the design.
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6.2 Tri-State Bus

The tri-state buses to avoid the contention of the data can be used in the design.
At the top-level design, these buses can be added with the other SOC components.
Depending on the design requirements, the unidirectional or bidirectional buses can
be used in the design. Instead of using the tri-state logic, the multiplexer-based
buses can be used for the design. The issue with the multiplexed buses is the long
combinational paths and the delays.

The unidirectional tri-state 32-bit bus using the VHDL is described in
Example 6.1.

The synthesis outcome of the example is shown in Fig. 6.1.
In the design depending on the need, the bidirectional or MUX-based buses can

be used. As discussed, the SOC applications need to have the high-speed buses in
the design to exchange the data between the processors and memories. The common

// Verilog code for the 32 bit tri-state bus

input [31:0]  a_in,
input enable_in ;
output [31:0]  y_out ;

reg [31:0]  y_out;

always@(*)

 begin

if ( enable_in) 

y_out = a_in;

else

y_out = 32’bz;

end

endmodule

The always block is 
sensi ve to ‘enable_in’, 
‘a_in’.
The ‘y_out’ is assigned as  
a_in for enable_in =’1’
For enable_in =’0’ y_out
is assigned as high 
impedance state. 

module tri_state_bus  ( a_in, enable_in, y_out);

Example 6.1 Verilog code for the 32-bit tri-state bus
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Fig. 6.1 Tri-state 32-bit bus

shared bus needs the bus arbitration and the data exchanges become slower. Also, the
issue of the data integrity needs to be addressed while exchanging the data between
the processor and peripheral devices.

6.3 Serial Bus Protocols

In most of the SOC designs, we observe the need of the serial buses to transfer the
data to the serial devices. Few of them frequently used to transfer data are USART,
UART, Inter-Integrated Circuit (I2C), Serial Peripheral Interface (SPI), and other
serial controllers.

1. USART: It is universal synchronous asynchronous transmitter and receiver, and
its characteristics are explained below

a. Used for the synchronous or asynchronous serial communications.
b. By using the programmable features, the frequency for the transmission can

be controlled. In other word, it has variable baud rate.
c. It supports the interrupt transmission control.
d. It supports the packet data of 5–9 bits with or without parity.
e. During transmission, the detection of error is possible.

2. UART: It is universal asynchronous receiver and transmitter, and few character-
istics are described below

a. Used for the serial transmission of the data.
b. Data transfer is asynchronous in nature.
c. The interval between the data transfer is undefined.
d. It uses the start and end of packet for the serial transmission.
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Fig. 6.2 Serial data transfer using Rx, Tx

Fig. 6.3 UART packet structure

e. Baud rate is fixed and should be known to both sides for the transmission.
f. In the full duplex mode, the transmission and reception can be performed

simultaneously.

3. Both sides can initiate the data transfer (Fig. 6.2).
The single packet frame is shown in Fig. 6.3.
As shown it starts with the start bit ‘logic 0’ and then 5–8 bits of the data and
single parity bit. The frame ends with the 1 or 2 stop bits.
The even parity is logic 0, and odd parity is logic 1.
The receiver should know the following parameters:

a. Baud rate that is programmable baud number
b. Number of bits for each frame
c. Parity
d. Number of stop bits
e. The transition detected from logic 1 to logic 0 indicates the start of the frame,

and the state machine controller needs to detect this. Then during the next
state at the middle edge it is essential to detect the data bits, parity, and stop
bits.

f. Framing error: If zero is detected in the stop bits
g. Parity error: If the calculated parity does not correspond to the destination,

then it generates the parity error.

4. I2CBus: It is Inter-Integrated Circuit Bus and developed by the Philips semicon-
ductor during the year 1980. The I2C is used when it is essential to communicate
the devices occasionally, and the major advantage is that the addressing scheme.
The addressing scheme allows the interconnection of the multiple devices with-
out use of the additional wires. But there are limitations due to half-duplex mode



102 6 Buses and Protocols in SOC Designs

Fig. 6.4 I2C bus controller

Fig. 6.5 I2C timing sequence

and due to that not scalable for the larger number of devices. This is used for the
control interface. Following are few of the characteristics

a. The bus has inside bus length less than 1 m.
b. The bus can be used for the effective serial communication for maximum

distance of few meters.
c. The I2C speed is 100 Kbps to 3.4 Mbps.
d. I2C devices can have the separate data interface, for example, audio decoders,

video decoders, etc. (Fig. 6.4).

The I2C has two wires, i.e., SDA and SCL. SDA is serial data and SCL is serial
clock. It can be treated as half duplex serial master without any arbitration or chip
select. The structure is equivalent to wire AND. Logic ‘1’ connection to these
lines indicates the pull-up resistor. Logic 0 indicates the open drain configuration.
The I2C timing sequence is shown in Fig. 6.5

How the communication is established in I2C?
The timing sequence is shown in Fig. 6.5 and as shown for serial data transfer
following is the sequence:

• Start (S): Falling edge when SCL is logic ‘1’,
• ACK: the receiver pulls down the status of SDA to logic ‘0’, and transmitter
maintains SDA to logic ‘1’,

• Stop (P): Rising edge on the SDA when SCL is logic ‘1’. Data on SDA is valid
when SCL is logic ‘0’ and SCL is equal to logic ‘1’ for the valid transmission.

• Master sends the start signal (S) and the clk is generated on the SCL line.
• Master sends the 7-bit slave address.
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Fig. 6.6 SPI bus master–slave interface

Fig. 6.7 SPI timing diagram

• Master sends the data bit read or write(R/W) signal. R/W is equal to logic ‘0’
indicates the slave will receive the data, and logic ‘1’ indicates the slave will
transmit the data.

• After this transmitter, either slave or master sends the acknowledge (ACK) bit.
• Then the transmitter sends the 8 bit of data.
• After receiving the byte, the receiver sends an acknowledge (ACK).
• For burst of the data bytes, the controller needs to repeat the step 5 and step 6.
• For the write transaction; if the master is transmitter, then sends the stop (P) after
the last byte of data.

• For the read transaction; if the master is receiver, then it does not send the ACK
signal but only sends the stop (P) signal to confirm the end of the transmission.

5. SPI BUS: It is Serial Peripheral Interface bus and synchronous in nature. The
communication is established between the master–slave devices. It has 4 lines,
2 data lines MOSI: Master data output, slave data input, and MISO: Master
data input and slave data output. The two control lines are SCLK: clock and
complement of SS: Slave select (Figs. 6.6 and 6.7).
Active edge of the clock is determined by the two parameters, and they are clock
polarity (CPOL) and clock phase (CPHA). Both are logic zero or both are logic
one indicates the rising edge. Both parameters are not equal and then indicate the
falling edge. Care should be taken that the master and slave should be configured
with the same set of parameters; otherwise, they will not communicate.
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Fig. 6.8 Bus arbitrations

6.4 Bus Arbitration

The shared bus can be shared by multiple functional modules (components) in the
design environment. Depending on the request generated by one of the modules, the
bus can be granted if it is not busy.

The bus arbitration is used to sample the requests generated by the different SOC
components sharing the common bus and to grant the request to one of the SOC
components.

As shown in Fig. 6.8 the multiple components (module 1 to module n) generate
the request to the bus arbiter and wait for the grant signals from the arbiters. After
receiving the grant signal from the bus arbiter, one of the components gains the
control of the shared bus.

In the practical environment, there aremany schemes to design the bus arbitration,
and they can be daisy chaining, round-robin, static arbitrations. Depending on the
design requirements, these schemes can be used in the SOC designs.

6.5 Design Scenarios

The design scenarios encountered during the parallel data transfer and the serial data
transfer are discussed in this section.



6.5 Design Scenarios 105

module static_arbitration ( clk, reset_n, request_0, request_1, request_2, 
grant_0,grant_1,grant_2);

input clk;

input reset_n;

input request_0, request_1,request_2;

output reg grant_0, grant_1,grant_2;

always @(posedge clk or negedge reset_n)

begin

if (~reset_n)

{grant_2,grant_1,grant_0}<=3'b000;

else 

begin
grant_0<= request_0;

grant_1 <= (request_1 && (!request_0));

grant_2<=( request_2&& (!(request_1||request_0)));

end

end
endmodule

In this the request_0 
has the highest priority 
and request_2 has the 
lowest priority.  

Example 6.2 Synthesizable Verilog code of the static arbiter

6.5.1 Scenario 1: Static Arbitration

The static arbitration using Verilog is described in Example 6.2.
The HDL synthesis outcome is shown in Fig 6.9.

6.5.2 Scenario 2: Bidirectional Data Transfer and
Registered IOs

The bidirectional buses are used in the design to transfer the data to/from the pro-
cessor. The Verilog code is described in Example 6.3 and Fig. 6.10.
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Fig. 6.9 Synthesis result of static arbiter

module bidirectional_bus (data_to_bus, send_data, receive_data, data_from_bus, 
qout);

parameter N = 16; 

input send_data;

input  receive_data;

input [N-1:0] data_to_bus;

output [N-1:0] data_from_bus;

inout [N-1:0] qout; 

wire [N-1:0] qout, data_from_bus;

assign data_from_bus = receive_data ? qout : {N{1'bz}};

assign qout = send_data ? data_to_bus : {N{1'bz}};

endmodule

It infers the 
bidirec onal 16 bit 
bus.
receive_data and 
send_data are used to 
control the data 
transfer direc on  

Example 6.3 Synthesizable Verilog code for bidirectional bus
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Fig. 6.10 Synthesis outcome for the bidirectional IO

6.5.3 Scenario 3: UART Transmitter and Receiver Design

The following section describes the design of the UART transmitter and receiver.
The design of baud rate generator, receiver and transmitter section with associated
logic is described in this section (Examples 6.4, 6.5, 6.6, and 6.7).

6.6 High-Density FPGA Fabric and Buses

Most of the high-density FPGAs like Xilinx and Intel uses the transceivers and other
high-speed bus transfer interfaces and can be used during the SOC design.

6.6.1 Xilinx-7 Series Transceivers

The architecture has the low-power gigabit transceiver. Due to low-power architec-
ture, the chip-to-chip interface is optimized and this is one of the powerful features
of this FPGA. The high-performance transceiver is capable to support the data rate
from 6.6 to 28.05 Gb/s depending on the device family of the Virtex-7 FPGA.

The transceiver count is 16 in the Artix-7 FPGA family, up to 32 transceivers in
the Kintex-7 FPGA family, and up to 96 transceivers in the Virtex-7 FPGA family.

To improve the IP portability, the architecture of the serial transceiver uses the ring
oscillators and LC tank circuit. The transmitter and receiver circuits are different,
and they use the PLL to multiply the reference clock by the programmable number
up to 100 to get the bit serial clock.

6.6.1.1 Transmitter

Following are the key features of gigabit transmitter:

1. The transmitter is parallel to serial converter with conversion ratio of 16, 20, 32,
40, 64, or 80.

2. The GTZ transmitter supports up to 160-bit data width.
3. It uses TXOUTCLK used to register the parallel data.
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//The code describes the baud rate generator for the UART receiver
module baud_gen ( clk, reset_n, max_tick_size, q_out);
parameter N= 4;
parameter Y:= 10;

input clk, reset_n;
output max_tick_size;
output [N-1:0] q_out ;
wire [N-1:0] q_out;

reg [N-1:0] tmp_reg;
reg [N-1:0] tmp_next;

always @ (posedge clk or negedge reset_n)
begin
if (reset_n)
tmp_reg <= 0;
elss
tmp_reg <= tmp_next;
end

//next state logic is described below 
always@ ( tmp_reg)
begin
if (tmp_reg/=(Y-1) ) 

tmp_next<= 0;
max_tick_size<=1’b0;

else

tmp_next<= tmp_reg + 1;

max_tick_size<=1’b1;

end

endmodule

Depending on the 
opera ng frequency 
of the design the 
frequency can be 
chosen.
The ck size is equal 
to maximum 
frequency/no of 
samples per second. 

Example 6.4 Synthesizable Verilog code of baud rate generator

4. The incoming parallel data is fed through an optional FIFO and to provide the
sufficient number of transitions, it has additional support of 8B/10B, 64B/66B
encoding schemes.

5. The output of these transmitters drives the PC board with the single-channel
differential output signal.
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 //The code describes the UART receiver
module uart_receiver ( clk, reset_in, receiver_in, baud_tick, receiver_done_tick, receiver_data_out);
parameter data_width = 8;
parameter baud_rate_tick= 16;

input clk, reset_n;
input receiver_in;
input baud_tick;;
output reg  receiver_done_tick;
output [data_width-1:0] receiver_data_out;

wire [data_width-1:0] receiver_data_out;

parameter idle=2’b00;
parameter  start=2’b01;
parameter  data=2’b10;
parameter  stop=2’b11;;
reg [1:0] state_reg, state_next: state_type;
reg [3:0] s_reg, s_next;
reg [2:0] n_reg, n_next;
reg [7:0]  b_reg, b_next;

always@ (posedge clk or negedge reset_n)
begin
if ~(reset_n) 
state_reg <= idle;
s_reg <= 0;
n_reg <= 0;
b_reg <= 0;
else
state_reg <= state_next;
s_reg <= s_next;
n_reg <= n_next;
b_reg <= b_next;
end
//description of the next state logic
always@  (state_reg, s_reg, n_reg, b_reg, baud_tick, receiver_data)
begin
state_next <= state_reg;
s_next <= s_reg;
n_next <= n_reg;
b_next <= b_reg;
receiver_done_tick <=0;
case state_reg 
idle : 
if (~receiver_in ) 
state_next <= start;
s_next <= 0;
b_reg <= b_next;
end

The receiver logic uses the 
output of the baud rate 
generator and using the 
UART protocol it samples 
the serial input. 
The receiver data out is 8 
bit parallel output. 

Example 6.5 Synthesizable Verilog code of UART receiver

6. To compensate for the PC board losses, the output signal pair has programmable
signal swing.

7. To reduce the power consumption, this swing can be reduced for the shorter
channels.
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// next state logic continued for the receiver section
always@  (state_reg, s_reg, n_reg, b_reg, baud_tick, receiver_in)
begin
state_next <= state_reg;
s_next <= s_reg;
n_next <= n_reg;
b_next <= b_reg;
receiver_done_tick <= ’0’;
case state_reg is
idle: 

if (~rx ) 
state_next <= start;
s_next <= 0;
n_next <= n_reg + 1;

else
s_next <= s_reg + 1;

stop : 
if (s_tick)
if (s_reg = (Baud_rate_tick-1)) 
state_next <= idle;
receiver_done_tick <= 1;
else
s_next <= s_reg + 1;
endcase;
end 
assign receiver_data_out = b_reg;
endmodule

Depending of the baud 
rate ck the receiver data  
output is assigned.  

Example 6.5 (continued)

6.6.1.2 Receiver

Following are key features of gigabit receivers:

1. The receiver is serial to parallel converter with conversion ratio of 16, 20, 32, 40,
64, or 80.

2. The GTZ receiver supports up to 160-bit data width.
3. To guarantee sufficient data transition, it uses non-return-to-zero (NRZ) encod-

ing.
4. The parallel data is transferred into the FPGA using the RXUSRCLK.
5. For short channels to reduce power consumption by almost 30%, the transceiver

offers special low-power (LPM) mode.
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//external logic interface Verilog description
module interface_logic (clk, reset_n, clr_flag, set_flag,data_in, data_out,status_out);

parameter N= 8;
input clk, reset_n;
input clr_flag, set_flag;
input [N-1:0] data_in;
output [N-1:0] data_out;
output status_flag;

reg [N-1:0] buf_reg, buf_next;
reg flag_reg, flag_next;

always@ (posedge clk or negedge reset_n)

begin
if (~reset_n) then
buf_reg <=0;
flag_reg <= 0;
else
buf_reg <= buf_next;
flag_reg <= flag_next;

end 
// next-state logic for the interface logic
always@  (buf_reg, flag_reg, set_flag, clr_flag, data_in)
begin
buf_next <= buf_reg;
flag_next <= flag_reg;
if (set_flag ) 
buf_next <= data_in;
flag_next <= 0;
else if (clr_flag ) 
flag_next <= 0;
end 
//assignment to the output 
assign data_out <= buf_reg;
assign status_flag <= flag_reg;

endmodule

The logic is used to 
interface with the eternal 
interfaces  

Example 6.6 Synthesizable Verilog code of external interface logic

6.6.2 Intel FPGA Transceivers

The Intel FPGA transceiver block is shown in Fig. 6.11.
The Stratix 10 Intel FPGA features and capabilities are listed in Table 6.1.
As shownmost of the high-density FPGAsnowadays has the high-speed interfaces

and supports the standard protocols.
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//ransmi er code verilog descrip on

module  uart_tnasmitter (clk, reset_n, transmitter_start, baud_tick, data_in, 
transmit_done_tick, transmit_out);
parameter data_width = 8;
parameter Baud_rate_tick = 16;
input clk, reset_n;
input transmitter_start;
input baud_tick;
input [data_width-1:0] data_in;
output transmit_done_tick;
output transmit_out;
parameter idle=2’b00;
parameter  start=2’b01;
parameter  data=2’b10;
parameter  stop=2’b11;
reg  state_reg, state_next: state_type;
reg [3:0]  s_reg, s_next;
reg [2:0] n_reg, n_next;
reg [7:0]  b_reg, b_next;
reg  tx_reg, tx_next;

always @  (posedge clk or negedge reset_n)
begin
if (~reset_n) 
state_reg <= idle;
s_reg <=0;
n_reg <= 0;
b_reg <= 0;
tx_reg <= 1;
else
state_reg <= state_next;
s_reg <= s_next;
n_reg <= n_next;
b_reg <= b_next;
tx_reg <= tx_next;
end

// the next state logic description is given below
always@ (state_reg, s_reg, n_reg, b_reg, s_tick,
tx_reg, transmitter_start, data_in)
begin
state_next <= state_reg;
s_next <= s_reg;
n_next <= n_reg;
b_next <= b_reg;
tx_next <= tx_reg;

The logic is used to 
generate the serial data 
depending on the baud 
clock rate.   

Example 6.7 Synthesizable Verilog code of UART transmitter
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transmit_done_tick <= 1’b1;
case state_reg 
 idle : 
tx_next <= 1’b1;
if (trasmitter_start ) 
state_next <= start;
s_next <= 0;
b_next <= data_in;
start : 
tx_next <= 1’b0;
if (s_tick ) 
if (s_reg == 15) 
state_next <= data;
s_next <= 0;
n_next <= 0;
else
s_next <= s_reg + 1;

 data : 
tx_next <= b_reg[0];
if (s_tick) 
if (s_reg ==15) 
s_next <= 0;
b_next <= {0,  b_reg[7: 1]};

if (n_reg = =(data_width - 1)) 
state_next <= stop;
else
n_next <= n_reg + 1;

else
s_next <= s_reg + 1;

stop : 
tx_next <= 1’b1;
if (s_tick = ’1’) 
if (s_reg == (baud_rate_tick-1)) 
state_next <= idle;
transmit_done_tick <= 1’b1;
else
s_next <= s_reg + 1;
endcase
end
assign transmit_out = tx_reg;

endmodule

Depending on the baud 
rate ck the   transmi er 
output is assigned. 

Example 6.7 (continued)
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Fig. 6.11 Intel FPGA
transceiver [1]

6.7 Single Master AHB

The single master AHB-lite bus architecture is shown in Fig. 6.12. The master can
generate the address and can be decoded by the decoder. Decoder generates the select
signal to select the slave.

The write and read transactions can be initiated by using such type of architecture.
For more details, refer the AHB/APB architectures and ARM processor system.

6.8 How This Discussion Is Useful During SOC
Prototyping?

If we see the need in the most of the prototyping system, then we can think of
following:

a. Need of the processor buses and peripheral buses.
b. In such context, it is better to use the AHB and APB buses.
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Table 6.1 Intel Stratix 10 FPGA transceiver features [1]

Feature Capability

Chip-to-chip data rates 1 Gbps to 28.3 Gbps (Intel Stratix 10 GX/SX devices)

Backplane support Drive backplane at data rates up to 28.3 Gbps, Including
10GBASE-KR compliance

Optical module support SFP+/SFP, XFP, CXP, QSFP/QSFP28, QSFPDD,
CFP/CFP2/CFP4

Cable driving support SFP+Direct Attach, PCI Express over cable, eSATA

Transmit pre-emphasis 5-tap transmit pre-emphasis and de-emphasis to compensate for
system channel loss

Continuous-time linear
equalizer (CTLE)

Dual mode, high-gain, and high-data rate, linear receive
equalization to compensate for system channel loss

Decision feedback equalizer
(DFE)

15 fixed tap DFE to equalize backplane channel loss In the
presence of crosstalk and noisy environments

Advanced digital adaptive
parametric tuning (ADAPT)

Fully digital adaptation engine to automatically adjust all link
equalization parameters including CTLE, DFE, and VGA
blocks—that provide optimal link margin without Intervention
From user logic

Precision signal integrity
calibration engine (PreSlCE)

Hardened calibration controller to quickly calibrate all
transceiver control parameters on power-up, which provides the
optimal signal Integrity and jitter performance

ATX transmit PLLs Low jitter ATX (Inductor–capacitor) transmit PLLs with
continuous tuning range to cover a wide range of standard and
proprietary protocols, with optional fractional frequency
synthesis capability

Fractional PLLs On-chip fractional frequency synthesizers to replace onboard
crystal oscillators and reduce system cost

Digitally assisted analog
CDR

Superior jitter tolerance with fast lock time

On-die instrumentation-eye
viewer and jitter margin tool

Simplify board bring-up, debug, and diagnostics with
non-intrusive, high-resolution eye monitoring(Eye Viewer), Also
inject jitter from transmitter to test link margin in system

Dynamic reconfiguration Allows for independent control of each transceiver channel
Avalon memory-mapped interface for the most transceiver
flexibility

Multiple PCS-PMA and
PCS-core to FPGA fabric
interface widths

8-, 10-, 16-, 20-, 32-, 40-, or 64-bit interface widths for flexibility
of deserialization width, encoding, and reduced latency
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Fig. 6.12 AHB-lite single master–multiple slave systems

External 
Interface

APB 
Bridge 

GPIO

UART 

Timer 

K/B

Processor

RAM DMA Master

Fig. 6.13 AHB-APB bus use in the design

The bus arbiters for the multiple master and multiple slave interfaces.
d. The environment should have the IO devices interfacing using the APB bus.
e. The APB bridge can be used to establish the communication with the AHB bus.

Most of the high-density FPGAs have all such kind bus interfaces and can be
used to communicate between multiple IO devices with other SOC components
(Fig. 6.13).
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6.9 Important Takeaways and Further Discussions

The following are few important points to conclude this chapter

1. The buses in the design are used to exchange the data between the processing
elements.

2. The bus width and the data exchange speed decided the overall design perfor-
mance.

3. The predefined functional- and timing-proven bus architectures can be used dur-
ing the SOC prototyping to have the improved design performance.

4. The I2C, SPI, USB can be used to transfer the data between the SOC and other
system.

5. The high-speed AHB and APB buses can be used in the architecture.
6. To avoid the bus contentions, use the arbitration scheme in the SOC design.

The next chapter discusses the memory and memory controllers in the design.
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Chapter 7
Memory and Memory Controllers

The double data rate memory and the constraints at the
interface boundary decide the overall data transfer speed.

Abstract In the SOC designs, the transfer of the data from the external memories
needs the dedicatedmemory controller. TheSDRAMorDDRmemory controllers are
used extensively in the SOC designs. The available IPs of such kind of controllers can
be integrated with other SOC components. During prototyping, it is essential to have
the FPGA equivalent logic of such IP cores. By considering all above, the chapter
discusses the memory controllers and their interfaces with the external memory. The
timing constraints for such type of controller are decisive factor for the overall design
and are discussed in this chapter.

Keywords SOC ·Memory controllers · SDRAM · DDR · AHB · APB · Latency
Max and min delay · Command · Address · Data · Clk · Generated clock
Timing · Setup · Hold · Hard core · Soft core
During the SOC prototyping, the design of the memory controller and integration
with the other SOC components to achieve desired speed is the important aspect. The
SOC RTL of such memory controller is not compatible with the FPGA equivalent
and needs themodifications. Under such circumstances, the RTL tweaks can be used.
But the better approach is to use the memory IPs and use the interface wrappers to
communicate with the eternal memories. The SDRAM or DDR interface timing is
crucial, and it is bottleneck to achieve the read and write cycle timing. The following
few sections discuss the architecture and interfaces for such kind of designs.
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7.1 Memory

In the SOC designs, the data need to be stored. The stored data can be used by the
processing unit to perform the operation. The memories can be classified as

1. Internal memory

a. Distributed RAM
b. Single-port RAM
c. Dual-port RAM

2. External memory

a. SRAM
b. SDRAM
c. DDR

This section describes the RTL design for the distributed RAM, single-port RAM,
and dual-port RAM.

7.1.1 Dual-Port Distributed RAM

The distributed RAM frequently referred using the Verilog RTL is described in
Example 7.1 (Fig. 7.1).

The device utilization for the Xilinx xc7v585tffg1157-3 is shown in the following
snapshot (Fig. 7.2).

7.1.2 Single-Port RAM

The single-port RAMwith the read first mode, write first mode, and no change mode
is described in this section.

7.1.2.1 Single-Port RAM (No Change Mode)

The single-port RAM using Verilog RTL is described in Example 7.2 (Figs. 7.3 and
7.4).

7.1.3 Single-Port RAM (Read First Mode)

The single-port RAM using Verilog RTL is described in Example 7.3.
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7.1.4 Single-Port RAM (Write First Mode)

The single-port RAM with the write first mode is described in Example 7.4.

7.1.5 Dual-Port RAM

The dual-port RAM with read first mode with the two write ports is described using
Verilog RTL in Example 7.5 (Figs. 7.5 and 7.6).

: 

module distributed_ram (clk, write_en, address_in_1, address_in_2, data_in, data_out_1, 
data_out_2);

input clk;

input write_en;

input [7:0] address_in_1;

input [7:0] address_in_2;

input [7:0] data_in;

output [7:0] data_out_1;

output [7:0] data_out_2;

reg [7:0] ram_mem [255:0];

always @(posedge clk) 

begin

if (write_en)

ram_mem[address_in_1] <= data_in;

end

assign data_out_1 = ram_mem[address_in_1];

assign data_out_2 = ram_mem[address_in_2];

endmodule

Example 7.1 Verilog RTL of dual-port distributed RAM
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Fig. 7.1 Synthesis result of distributed RAM

Fig. 7.2 Snapshot of device
utilization

7.2 Double Data Rate Memory

In most of the SOC designs, we need to have the memory controllers to transfer
the data at high speed. Let us consider the transfer of the 16 bits of the data. If the
controller 8-bit of data transfer mechanism and works using the single clock cycle,
then the two clock cycles are required to transfer the 16 bits of the data. To speed
up the data transfer, we can think of design of the controller which can transfer
lower byte on the rising edge of the clock and higher byte on the falling edge of the
clock. Effectively, the half cycle data transfer. The real challenge in such type of the
design is to align the clock phases while transferring the data. The constraints and
the clocking mechanism play the crucial role in such type of the design (Fig. 7.7).

The lower byte and higher byte of data can be sampled on the rising edge and
falling edge of the clock, respectively. Mechanism to sample the DQ on the active
edge of the clock is shown in Fig. 7.8. The timing relationship between the DQS and
DQ is shown in Fig. 7.9. The designer should take care that the data can be sampled
at the middle of the active edge.

7.3 SRAM Controllers and Timing Constraints

If we consider the design of the SRAM controller, then we can have the important
functional blocks as

1. Command generator
2. Data access interface
3. Address and control logic
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7.1.2.1 Single port RAM (No change mode) 

The single port RAM using verilog RTL is described in the example
module single_port_RAM  (clk, address_in, write_en, enable_in, data_in, data_out);

input clk;

input [7:0] address_in; 

input write_en; 

input enable_in; 

input [7:0] data_in;

output [7:0] data_out; 

reg [7:0] data_out; 

reg [7:0] RAM_MEM [255:0];

always @(posedge clk)

begin

if (enable_in) 

begin

if (write_en) 

begin

RAM_MEM[address_in] <= data_in; 

else

data_out <= RAM_MEM[address_in];

end

end

endmodule

Example 7.2 Verilog RTL for single-port RAM for read first and write first mode

Figure 7.10 describes these functional blocks to generate the interface signal.
The SRAM controller interfaced with the SRAM is shown in Fig. 7.11. The

interface signal description is shown in Table 7.1.
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Fig. 7.3 Synthesis result for the single-port RAM

Fig. 7.4 Device utilization snapshot

To specify the constraints, use the following steps
1. Define the primary clock.
2. Define the generated clock from PLL.
3. Define the address and control interface constraints.
4. Define the constraints for the data output.
5. Define the constraints for the data input.

# The following can be sample script using Synopsys constraints
#1
create_clock –name PLL_CLK –period 10 [get_pins UPPL/CLK_OUT]
#2
create_generated_clock –name clk –source [get_pins UPPL/CLK_OUT]
–divide_by 1 [get_ports/clk]
#3
set_output_delay –max 2.5 –clock clk [get_ports ADDR]
set_output_delay –min 1.0 –clock clk [get_ports ADDR]
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#4
set_output_delay –max 3.0 –clock clk [get_ports DQ]
set_output_delay –min 1.2 –clock clk [get_ports DQ]
#5
set_input_delay –max 4.0 –clock clk [get_ports DQ]
set_input_delay –min 1.5 –clock clk [get_ports DQ]

module single_port_RAM  (clk, address_in,  enable_in, write_en, data_in, data_out);

input clk;

input [7:0] address_in;

input write_en;

input enable_in;

input [7:0] data_in;

output [7:0] data_out;

reg [7:0] RAM_MEM [255:0];

reg [15:0] data_out; 

always @(posedge clk)

begin

if (enable_in)

begin

if (write_en)

RAM_MEM[address_in]<=data_in;

data_out <= RAM_MEM[address_in];

end

end

endmodule

Example 7.3 Verilog RTL of single-port RAM with read first mode
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module single_port_RAM  (clk, address_in, write_en, enable_in, data_in, data_out);

input clk;

input [7:0] address_in; 

input write_en; 

input enable_in; 

input [7:0] data_in;

output [7:0] data_out; 

reg [7:0] data_out; 

reg [7:0] RAM_MEM [255:0];

always @(posedge clk)

begin

if (enable_in) 

begin

if (write_en) 

begin

RAM_MEM[address_in] <= data_in; 

data_out <= data_in; 

end

else

data_out <= RAM_MEM[address_in];

end

end

endmodule

Example 7.4 Verilog RTL of single-port RAM with write first mode
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module dual_port_1 
(clk_1,clk_2,enable_in_1,enable_in_2,write_en_1,write_en_2,address_in_1,address_in_2,data_in_1,
data_in_2,data_out_1,data_out_2);
input clk_1,clk_2;

input enable_in_1,enable_in_2;

input write_en_1,write_en_2; 

input [7:0] address_in_1,address_in_2; 

input [7:0] data_in_1,data_in_2; 

output [7:0] data_out_1,data_out_2; 

reg [7:0] data_out_1,data_out_2; 

reg [7:0] ram_mem  [255:0];

always @(posedge clk_1) 

begin

if (enable_in_1) 

begin

if (write_en_1) 

ram_mem[address_in_1] <= data_in_1; 

data_out_1 <= ram_mem[address_in_1];

end

end

always @(posedge clk_2)

begin
if (enable_in_2) 
begin
if (write_en_2) 
ram_mem[address_in_2] <= data_in_2; 
data_out_2<= ram_mem[address_in_2];
end
end
endmodule

Example 7.5 Verilog RTL of dual-port RAM

7.4 SDRAM Controller and Timing Constraints

The SDRAM controller is interfaced with the SDRAM. The CAC, DQ, DQS, and
clk are important interface signals shown in Fig. 7.12.

The interface signal description is shown in Table 7.2.
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Fig. 7.5 Synthesis result for the dual-port RAM

Fig. 7.6 Device utilization for the Virtex-7 family device

Fig. 7.7 DQ and DQS generation logic

To specify the constraints, use the following steps
1. Define the primary clock.
2. Define the generated clock from PLL.
3. Set the output constraints for CAC.
4. Define the input constraints for the rising clock edge.
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Fig. 7.8 Capturing the lower and upper byte of data on active edge of DQS

Fig. 7.9 Timing relationship of DQS and DQ

5. Define the input constraints for the falling clock edge.
6. Launch the data and capture the data on edge.

The following can be sample script using Synopsys constraints
#1
create_clock –name PLL_CLK –period 5 [get_pins UPPL/CLK_OUT]
#2
create_generated_clock –name clk_DDR –source [get_pins
UPPL/CLK_OUT] –divide_by 1 [get_ports/clk_DDR]
#3
set_output_delay –max 1–clock clk_DDR [get_ports CAC]
set_output_delay –min -1–clock clk_DDR [get_ports CAC]
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Fig. 7.10 Important SRAM interface signals

Fig. 7.11 SRAM controller interfacing with SRAM
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Table 7.1 SRAM interface signal description

Interface_signal Description

CMD This interface signal carries the command information

ADDR These interface signals are used to carry the address

CNTRL The control signal information is carried by these signals

DQ Bidirectional data bus

CLK Clock for the SRAM interface

#4
set_input_delay –max -1.0 –clock DQS [get_ports DQ]
set_input_delay –min -0.5 –clock DQS [get_ports DQ]
#5
set_input_delay –max 0.4 –clock DQS –clock_fall [get_ports DQ]
set_input_delay –min -0.4 –clock DQS –clock_fall [get_ports DQ]
#6
Set_multicycle_path o –setup –to UPFF/D

While specifying the constraints for the write, use the clock multiplied by one.

create_clock –name PLL_CLKX1 –period 7 [get_ports CLKX1]
#2
create_generated_clock –name DQS -source CLKX1 –edges {1 2 3}
–edge_shift {1.7 1.7 1.7} [get_ports DQS]
#3
set_output_delay –max 0.25 –clock DQS [get_ports DQ]
set_output_delay –max 0.3 –clock DQS –clock_fall [get_ports DQ]
#4
set_output_delay –min 0.2 –clock DQS [get_ports DQ]
set_output_delay –max -0.3 –clock DQS –clock_fall [get_ports DQ]

7.5 FPGA Design and Memories

BRAM is embeddedmemory, and the FPGABRAMcan be configured as single-port
and dual-port BRAM. Depending on the architecture of FPGA device, each BRAM
consists of the number of static RAM cells. Among them, the few cells are used for
the configuration of the memory and remaining are used for the data storage. The
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Fig. 7.12 SDRAM interface signals

Table 7.2 SDRAM interface signal description

Interface_signal Description

CAC Command address and control bus

DQ Bidirectional data bus

DQS Bidirectional data strobe

CLK Clock for the SDRAM interface

Fig. 7.13 BRAM structure [2]

BRAMs are used for the internal storage of the data, to design FIFO, buffers, stacks,
and can be used to store data for the FSMs.

Every BRAMhas the clock and clock enable, read, write, and every BRAMcan be
configured as synchronous RAM. If we consider the two-port BRAM, then both ports
can be interchangeably used and can be controlled for the synchronous read/write
operation. If we consider Spartan 3 devices, then it has BRAM which works at
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module BRAM_16to2  (clk, write_en , enable , addr_in , data_in , q_out);

input clk;

input write_en;

input enable;

input [3:0] addr_in;

input [1:0] data_in;

output wire [1:0] q_out;

reg [1:0] BRAM_mem [0:15];

reg [3:0] read_address ; 

always @(posedge clk)

begin

if (enable)

if (write_en)
begin

BRAM_mem[addr_in] <= data_in;

read_address <= addr_in;

end

end

assign q_out = BRAM_mem[read_address];

endmodule

Single port BRAM of 
size 16X2 is described 
using the component 
of BRAM 16x1
The BRAM Verilog is 
for the write first 
mode. 

Example 7.6 Synthesizable Verilog RTL using BRAM component

200 MHz operating frequency. The BRAM single-port and dual-port structure is
shown in Fig. 7.13.

As shown in Fig. 7.13, the BRAM consists of the reconfigurable memory, address
lines, write enable and clk, data input and data output lines. The Verilog RTL for the
inference of the BRAM is described in Example 7.6, and the synthesis result for the
16×2 BRAM is shown in Figs. 7.14 and 7.15.
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Fig. 7.14 Synthesis result of BRAM [2]

Fig. 7.15 Device utilization
summary for Virtex-7

7.6 Memory Controllers

As discussed in the previous section, to access the data from the external memory we
need to have the memory controllers. During this decade, most of the modern FPGA
consists of the soft and hard memory controller cores. What the prototype team need
to do is to understand the

1. External interfaces of the memory controller
2. Timing and latency (useful for the constraints)
3. Compatibility of the interface signals with the prototyping environment
4. Overall speed of the design
5. Are the soft cores compatible with the FPGA logic (or need to tweak the inter-

faces)
6. Is there mechanism to calibrate for the PVT variations?
7. Whether the interface supports LVDS standard or not?

Figure 7.16 shows the external interface signals generated from the memory con-
troller and interface logic. With the processing environment, the communication can
be established using the AHB and APB bus.

The command controller can be used to generate the following commands.

• Refresh
• Read
• Write
• Precharge
• Activate
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Fig. 7.16 DDR memory controller and AHB–APB interface

• Mode register set
• Extended mode register set

7.7 How This Discussion Is Helpful in SOC Prototyping?

During prototyping, we can use the available soft and hard processor cores for the
memory controller. If the requirement is to have the internal memory, then use the
BRAMs. If large memory is required, then use the memory controller cores. The
Intel Stratix 10 memory controller core is described in this section.

7.7.1 Xilinx 7 Series Block RAM

The BRAMs are used in many applications and the architecture of BRAM is vendor
dependent. They can be configured using vendor-dependent EDA tool for the required
capacity. The Xilinx 7 series architecture has 36 KBBRAM, which can be visualized
as 2 X 18KBBRAM. The BRAM is synchronous RAMand can be cascaded without
any logic overheads to get 64 K X 1. The BRAM can be used as single port and dual
port. In the dual-port mode, the 18 KB BRAM can be used and configured as 18 K
X 1, 9 K X 2, 8 K X 4, 4 K X 9, etc., and 36KB BRAM can be used as 1 K X 36,
2 K X 9, 4 K X 9, etc. The BRAM architecture has built-in error correction (64-bit
ECC), and they can be used also in FIFO mode (Fig. 7.17).

All kinds of the SOC design uses the memories of type RAM, ROM, content
addressable. So, let us think that how these kinds of memories can be implemented.
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Fig. 7.17 Xilinx 7 Series
BRAM [1]

The memories can be instantiated either from the cell library or from the memory
generator.

To implement the small memories of a few bits, the LUTs can be used. It is
important that thesememories can be efficient enough to load, store, and pass the data.
But to have the better and efficient architecture for the design instead of distributing
the memories over the FPGA fabric, it is always better to use the BRAMs. The main
features of BRAM are:

1. SynchronousMemory: BRAMs can implement the synchronous single or dual-
port memory. One of the real beauties of such memory blocks is that when
configured as dual-port RAMeach port can operate at different clock frequencies.

2. They can be configured: The BRAM block is dedicated dual-port synchronous
RAM block and can be configured as discussed above. Each port can be config-
ured independently.
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3. BRAMs and their use in the FIFO designs: The BRAMs can be used to store
the data as they are dedicated and configured. With additional logic, FIFOs can
be implemented using BRAMs. The depth of the FIFOs can be configured with
the restriction that both the read and the write sides should have same width.

4. Error Correction: Consider the BRAM is configured as the 64-bit RAM, and
then each BRAM can store additional Hamming code bits. These bits are used to
perform the single-bit and double-bit error corrections during the read process.
For 64-bit BRAM, each BRAM can store the eight-bit Hamming code. The error
correction logic can be also used while writing or reading from the external
memories.

So, let us think how the BRAMs are inferred?

The synthesis tool partitions the larger memories into small blocks, and each block
can be implemented using BRAM. Effectively in the simple words, the BRAMs are
very effective building block which is inferred automatically during synthesis and
they are combined to model the wide range of memories used for the SOC.

7.7.2 Stratix 10 Memory Controllers

1. Intel Stratix 10 devices offer external memory bandwidth, with up to ten 72-bit
wide DDR4 memory interfaces running at up to 2666 Mbps.

2. The memory controllers have the lower power and resource efficiencies of hard-
ened high performance.

3. The external memory interfaces can be configured up to a maximum width of
144 bits when using either hard or soft memory controllers (Fig. 7.18).

7.7.2.1 Memory Controller’s Important Features

1. Memory controllers in IO bank: Each I/O bank contains 48 general purpose
I/Os and a high-efficiency hard memory controller. Controller is capable of sup-
porting many different memory types, having the different performance capabil-
ities.

2. Hard and soft memory controllers: The hardmemory controller is also capable
of being bypassed and replaced by a soft controller implemented in the user logic.
The I/O has a hardened double data rate (DDR) read/write path (PHY) capable
of performing key memory interface functionality

• Read/write levelling
• FIFO buffering to lower latency and improve margin
• Timing calibration
• On-chip termination
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Fig. 7.18 Stratix 10
memory controller [2]

3. Multiple memory interface calibrations: The timing calibration is included
using the hardmicrocontrollers based on Intel’s Nios® II technology, specifically
used to control the calibration of multiple memory interfaces. This calibration
allows the Intel Stratix 10 device to compensate for any changes in process,
voltage, or temperature either within the Intel Stratix 10 device itself or within
the external memory device.

4. Advanced calibration: The advanced calibration algorithms ensure maximum
bandwidth and robust timing margin across all operating conditions (Table 7.3).

5. Parallel and serialmemory interface: In addition to parallelmemory interfaces,
Intel Stratix 10 devices support serial memory technologies such as the Hybrid
Memory Cube (HMC). The HMC is supported by the Intel Stratix 10 high-speed
serial transceivers, which connect up to four HMC links, with each link running
at data rates of 15 Gbps (HMC short reach specification).
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Table 7.3 Stratix 10 hard
and soft memory controller
performance [2]

Interface Controller type Performance (Mbps)

DDR4 Hard 2666

DDR3 Hard 2133

QDR II/II+Xtreme Soft 550

RLDRAM II Soft 533

RLDRAM II Soft 2400

6. LVDS IOs: Intel Stratix 10 devices also feature general purpose I/Os capable of
supporting a wide range of single-ended and differential I/O interfaces. LVDS
rates up to 1.6Gbps are supported,with each pair of pins having both a differential
driver and a differential input buffer. This enables configurable direction for each
LVDS pair.

7.8 Important Takeaways and Further Discussions

Following are the few of the important points to conclude this chapter

1. The SRAM does not need the refresh circuit. DRAM needs the refresh circuit.
2. In the double data rate memories; the data can be transferred on the positive and

negative edge of the clock.
3. The data alignment logic needs to be incorporated for the DDR. The data can be

aligned at the center of every clock edge.
4. The latency and timing of the address select and data select decide the speed of

the data transfer.
5. In the FPGA, the memories can be implemented using the LUTs or ALM blocks.
6. For large memory blocks, the BRAMs can be the better choice.
7. Xilinx Virtex-7 and Stratix 10 devices have the in-built hard memory controller

cores.
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Chapter 8
DSP Algorithms and Video Processing

The DSP processing environment should use the real-time
clocks, DSP processor cores, and DMA.

Abstract This chapter discusses the DSP algorithms and the role of the design engi-
neer to achieve the desired performance for the DSP designs. The chapter is useful
to understand the basics of FIR, IIR filter design using Verilog and the performance
improvement for the design. The chapter even focuses on the architecture and micro-
architecture and their implementation for the video applications. The video encoder
and decoder architectures and micro-architecture to design them are discussed with
the practical scenarios.

Keywords RTL · Verilog · DSP · FIR · IIR · LFSR · Video decoder
Video encoder · Audio processing · Video processing · If-else · Case · Process
Sequential design · Pipelining · DSP processor ·MAC

During this century, we visualize lot many applications using the digital signal pro-
cessing (DSP). The complexity of these applications and the desired speed encour-
ages us to design the high-performanceDSP processors. The application can be in the
multimedia, audio or video processing; the requirement is to have the least area, low
power and high speed. Even the data rate, efficiency of the design, and multitasking
are key important parameters need to be thought before implementing such applica-
tions. The chapter focuses on all these aspects and the design of the DSP algorithms.
The chapter is useful to understand the DSP processor trends, architecture, and the
Xilinx and Intel FPGAs suitable for such kind of the complex applications.
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8.1 DSP Processors

If we consider the use of the DSP, then there are many areas in which we can use the
algorithms to get the desired speed, power, and area. The main applications of the
DSP are in the following areas, these areas are evolved during this decade, and still
there is research going on in these areas. Few of the DSP application areas are listed
below:

1. Control and instrumentationapplications: TheDSPprocessors and algorithms
are extensively used for navigation and guidance, power system monitoring,
transient analysis of the signals, RADAR, sonar, etc.

2. Speech processing applications: Most of the times, we need to have the effi-
cient DSP algorithm or architecture for the encryption, decryption, and speech
recognition. For such kind of designs, the DSP algorithms can be realized using
the FPGAs.

3. General Purpose DSP applications: In general, most of the time to design the
filters like FIR, IIR and for convolution we use the DSP algorithms using C/C++
or using the HDLs.

4. Audio processing applications: Audio equalization, audio mixing, sound syn-
thesis are few of the important applications where the efficient DSP architecture
and implementation can give the better results.

5. Image processing: The compression and decompression of the images, image
recognition, face recognition and image enhancement are few of the areas where
DSP algorithms and processors are used extensively.

In this context, the designs need to be prototyped on the FPGAs. In the present
scenario, if we consider the modern FPGA architecture of Xilinx or Intel FPGA, then
we can conclude that these architectures are efficient enough to achieve the desired
performance for the complexDSP tasks. If we consider the basic DSP representation,
then we can think of following blocks to implement the DSP algorithms (Fig. 8.1).

Fig. 8.1 DSP-based processing blocks
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As shown in the figure for any DSP implementation, we can think of using the
following blocks:

1. ADC
2. DSP processor
3. DAC

The input to the system is analog input and is converted into the digital data using
the ADC. The analog inputs are sampled by the sample and hold depending on the
sampling frequency and resolution of the ADC. The sampled signals are quantized
to get the digital output and given to the DSP processor for the processing of the
desired application. The output from the system can be digital or analog depending
on the requirement of the design. In the practical environment the system may need
to have input filters for such kind of processing.

As a prototype engineer to implement these applications, we need to think about
the following few points:

1. How fast the input signal is? This can allow us to choose the ADC to sample the
correct signal.

2. In the practical scenario, the designer can use the ADC daughter card with the
FPGA.

3. The DSP algorithm complexity, speed, power, and bandwidth requirements
decides about the selection of the desired FPGA.

4. Whether the design needs hard processor, DSP core or the DSP algorithms need
to be implemented using HDL?

5. What is the operating frequency required to execute the single instruction or
multiple instructions?

6. Whether my design architecture is efficient enough to allow the chunk of data
residing inside the FPGA platform?

7. Can I use the lower frequency with the multitasking or whether my design needs
to run at high frequency without parallelism?

8. Whether it supports the real-time processing of the data?

The answer to all these questions can yield into the better DSP architecture and
the algorithm implementation.

8.2 DSP Algorithms and Implementation

What we need to think is?

1. What kind of computational elements required?
2. The complexity of the DSP algorithm
3. What are the functional implementation requirements

a. Adders, multipliers, shifters, MAC
b. The pipelined requirements
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Fig. 8.2 Multiply and
accumulate

c. The speed, area, and low power requirements for the design
d. The design partitioning into multiple functional blocks

For example, consider the DSP algorithm which needs accumulation of the data
after multiplication. The MAC can be efficiently designed and shown in Fig. 8.2.

TheRTLdesign and implementationof theLinear FeedbackShiftRegister (LFSR)
are discussed in this section. The designers can think of other algorithmic implemen-
tation like FIR, IIR using the HDLs.

8.2.1 LFSR

In most of the applications, we need to implement the polynomial to have the LFSR.
The RTL code for the polynomial is described in Example 8.1 (Fig. 8.3).

8.3 DSP Processing Environment

While designing algorithms for the DSP applications, consider the following few
important points (Fig. 8.4).

1. The processing speed, throughput, and the IO data rate
2. The processor architecture, whether it supports the pipelining of the instructions
3. Whether processor supports the floating point operations using the available

instructions
4. The architecture should have the separate program memory and data memory

buses
5. For fast access of the data, the DMA interface should be the better choice.
6. Have the internal storage in the form of FIFO or circular buffers
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//verilog code for the lfsr

module lfsr ( clk, y_out);

input clk;

output [5:0] y_out;

reg [5:0] tmp_reg;

integer k;

always @ (posedge clk)

begin

tmp_reg [0] <= tmp_reg[4] ~^ tmp_reg[5];

for (k=5; k>=1; k=k-1)

tmp_reg [k] <= tmp_reg [k-1];

end

assign y_out = tmp_reg;

endmodule

The LFSR triggered on 
the posi ve edge of 
clock and having 
output y_out.

Example 8.1 Verilog code for the LFSR

Fig. 8.3 Synthesis result for the LFSR

8.4 Architecture for the DSP Algorithms

While architecting for the SOC for the DSPs what we need to think? This can be
effectively answered in the following way!

1. DSP processor core: The capability of core should be to perform the complex
operations. It should have
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a. Internal memory and storage registers
b. Circular buffers and FIFO mechanisms to support the queuing of the data
c. Multipliers and large-density accumulators
d. Shifters
e. The floating point support logic
f. The separate logic for the program and data memory access
g. Pipelining and multitasking features

2. DMA controllers: The most important feature of the direct memory access
should be on chip with the processor. This will give freedom to the DSP proces-
sors to perform the concurrent operation with the DMA.

a. DMA can be used to transfer the burst of the data between the memories or
from the memory to IO.

3. The serial interfaces: The capabilities like serial data transfer using I2C or SPI
can be an added advantage. They can be used to interface the eternal serial devices
with the SOC.
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Shifters

Registers

Memory

Program 
Memory

Data Memory

Program 
Memory 
Address 

Generator

DMA

Controller

CLK and 
reset logic

DATA 
Memory 
Address 

Generator

Instruction 
cache

Program 
Sequencer

and 
Scheduler

Fig. 8.4 DSP processing system
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4. On-chip PLL: The phase locked loops to generate the clock and the additional
clock distribution logic for the clock distribution with uniform clock skew.

5. Real-time data processing: To process the real-time data, the timers and real-
time clocking should be present in the DSP SOC.

6. USBcontrollers: TheUSB interface for the data transfer between the host system
and the DSP processor core can be used in most of the architectures.

7. Analog blocks: The analog blocks like ADCs and DACs can make the SOC
compatible for the analog interfaces.

8. BUS interface logic: The SOC components with additional logic can be inter-
faced with the host using the high speed bus interfaces.

By considering all these features, the architecture of the SOC should be evolved
for the required DSP capabilities is shown in Fig. 8.5.

Internal storage

External Bus 
interface

DMA 
controller

USB Controller
Real me clock

Timer 

Serial 
interfaces I2c 

and SPI

PLL

DSP processor cores

ADC DAC

Fig. 8.5 Architecture for the DSP processing system
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8.5 Video Encoders and Decoders

The high-density video processing systems need to have the video encoders and the
decoders. The architecture of such type of the system is complex enough due to the
parallelism, storage needs. The video encoding should be real time and what needs
to be incorporated?

1. The ping-pong buffers or the circular buffers to queue the data.
2. Frame prediction logic can be used to detect the type of the frame. For example,

if we use the H.264 encoder standard, then the frame can be intra or inter and
can be predicted by the frame prediction logic.

3. Frameprocessing logic:Tohave thequantization and the entropy coding, the logic
can be used. As such kind of system uses the complex matrix multiplications,
the density of such logic is high.

4. Internal memory buffers: To store the data for the predictions, the high capacity
memory buffers are required.

5. Controllers: The controller using the multiple state machines can be designed for
such kind of the encoders to derive the timing and control signals.

The video encoding system is shown in Fig. 8.6. It is assumed that the video input
and output are digital data.

The compressed video data from the video encoders can act as input to the video
decoding system (Fig. 8.7). The components of such type of system are

1. Entropy encoding
2. The intra- or inter frame prediction logic
3. Inverse quantization and transform
4. Deblocking logic
5. Frame buffer (frame storage)

Fig. 8.6 Video encoder
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Fig. 8.7 Video decoder (H.264)

8.6 How the Discussion Is Helpful in SOC Prototyping?

As the FPGAs are having the DSP capabilities, they can be used to implement the
DSP algorithms. During the SOC prototyping, the RTL can be tweaked to have the
FPGA equivalent. Implement the FPGA-based algorithms by using the dedicated
DSP blocks available inside the FPGA.

High-density FPGAs fromXilinx or Intel are efficient for digital signal processing
(DSP) applications because they can implement custom, fully parallel algorithms.
As stated earlier, the DSP system should use the multipliers and accumulator while
executing the DSP algorithms.

Features of Xilinx 7 series FPGAs are listed below:

1. Full-custom, low-power DSP slices
2. High-speed, small size architecture
3. The DSP slices to enhance the design performance.

The basic functionality of the DSP48E1 slice is shown in Fig. 8.8 [1], and high-
lights of the DSP functionality include [1]:

1. 25×18 two’s complement multiplier
2. Dynamic bypass 48-bit accumulator
3. Single instruction, multiple data (SIMD) arithmetic unit
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Fig. 8.8 Xilinx DSP slice architecture [1]

4. Dual 24-bit or quad 12-bit add/subtract/accumulate
5. 96-bit-wide logic functions when used in conjunction with the logic unit
6. Optional pipelining and dedicated buses for cascading.

8.6.1 Intel FPGA DSP Block

Intel Stratix 10 devices have the powerful DSP features to perform the floating point
operations. The DSP block has the hard fixed point capability. The DSP architecture
is based on the variable precision architecture.

The important features of the DSP block are listed below:

1. Hard 18-bit and 25-bit pre-adders
2. Hard floating point adders and multipliers
3. For separate I , Q product accumulation the provision of the 64-bit accumulator
4. Embedded coefficient registers for the for 18-bit and 27-bit coefficients
5. Cascaded output adder chain for 18- and 27-bit FIR filter
6. Fully independent multiplier output
7. Can be easily inferred in all the modes using the HDL

The DSP block having standard precision fixed point mode is shown in Fig. 8.9
[2].

The DSP block with high precision fixed point mode is shown in Fig. 8.10 [2].
The DSP block with the single precision floating point number is shown in

Fig. 8.11 [2].
As shown in the figure, each DSP block can be configured independently as either

dual 18 × 19 or single 27 × 27 multiply and accumulate. The main application of
such kind of DSP is to implement the high precision DSP functions using the 64-bit
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Fig. 8.9 Standard precision fixed point mode [2]

Fig. 8.10 High precision fixed point mode [2]

cascade bus. The architecture of the DSP block is flexible enough, and by using
64-bit bus the multiple high precision blocks can be cascaded. Even in the floating
point mode, each DSP block provides the single precision floating point adder and
multiplier.
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Fig. 8.11 Single precision floating point number [2]

Table 8.1, shows the variable precision DSP block configuration.
The complex multiplication using variable precision DSP block supports the FFT

algorithms. The DSP block supports 18-bit DSP applications such as high-definition
video processing. It supports the floating point multiplications. The major advantage
of using this DSP capability is to reduce the overheads in the system design. It has
increased system performance and the low power consumption.

The prototype team can choose the FPGA depending on the need of the DSP
capabilities and complexity.

8.7 Design Scenarios

This section describes a few of the design scenarios. Most of the time, we need to
have the multipliers, barrel shifters, and filters during the implementation of the DSP
algorithms.

8.7.1 The Design of the IIR Filter

The infinite input response filter implementation is described in Example 8.2.
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8.7.2 FIR Filter

The Verilog description of the direct FIR filter is described in Example 8.3. The filter
design uses more number of multipliers.While implementing the filters, the designer
can push the logic using the DSP slices (Figs. 8.12 and 8.13).

8.7.3 Barrel Shifters

The barrel shifters are used to shift the data during the DSP algorithms. The Verilog
code is described in Example 8.4 (Fig. 8.14).

Example 8.2 : Synthesizable Verilog code of the IIR filter

//Verilog code for the iir filter

module  iir_design (clk, reset_n, data_in, data_out);

parameter N=15;

input clk ;

input reset_n;

input [N-1:0] data_in;

output [N-1:0] data_out;

reg [N-1:0] tmp1_data_out, tmp2_data_out;

always@  (posedge clk or negedge reset_n)

begin

if (~reset_n)
tmp1_data_out<=0;
tmp2_data_out<=0;

else

tmp1_data_out<=data_in;

tmp2_data_out<= tmp1_data_out+
{tmp2_data_out[N-1], tmp2_data_out[N-2:0]}

+ { {2{tmp2_data_out[N-1], tmp2_data_out[N-1:1]}};

end 

assign data_out<= tmp2_data_out; 
endmodule

The IIR filter sensi ve
on the rising edge of
clock. 

Example 8.2 Synthesizable Verilog code of the IIR filter
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//Verilog  code for the 4 tap direct FIR filter 

module fir_design (clk, reset_n, data_in, data_out);

parameter N=8;

input clk ;

input reset_n ;

input [N-1:0] data_in ;

output [N-1:0] data_out ;
reg [N-1:0] tmp_0, tmp_1, tmp_2, tmp_3;
reg [N-1:0] data_out, tap_0, tap_1, tap_2, tap_3;

always @ (posedge clk or negedge reset_n)

begin

if(~reset_n)
begin

data_out<=0;
{tmp_0,tmp_1,tmp_2,tmp_3} <= {0,0,0,0};
tap_3<=0;
tap_2<=0;
tap_1<=0;
tap_0<=0;

end

else
begin
tmp_1 <= tap_1<<1+tap_1+{tap_1[7], tap_1[7:1]}+{tap_1[7], tap_1[7], tap_1[7:2]};

The four tap direct fir 
filter realiza on using 
the non-blocking 
assignments

tmp_2 <= tap_2<<1+tap_2+{tap_2[7], tap_2[7:1]}+{tap_2[7], tap_2[7], tap_2[7:2]};

tmp_3<=tap_3;

tmp_0<=tap_0;

data_out<= tmp_1+tmp_2-(tmp_3+tmp_0);

tap_3<=tap_2;

tap_2<=tap_1;

tap_1<=tap_0;

tap_0<=data_in;

end

end

endmodule

The four tap direct FIR 
filter using Verilog is 
sensi ve to posi ve 
edge of the clock and 
having the output 
data_out

Example 8.3 Synthesizable Verilog code of four tap FIR filters
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Fig. 8.12 Synthesis result for the FIR filter

26 

// Verilog  code for the barrel shifter
module barrel_shifter  (clk, reset_n, load_en, data_in, data_out);

input clk;

input   reset_n ;

input  load_en;

input [7:0]  data_in ;

output wire [7:0]  data_out ;

reg [7:0] tmp_data_out;

always@ (posedge clk or negedge reset_n)

begin

if (~reset_n) 

tmp_data_out<= 0;

else if (load_en) 

tmp_data_out<= data_in;

else

tmp_data_out <= {tmp_data_out[6:0],tmp_data_out[7]};

end

assign data_out = tmp_data_out ;  

endmodule

The data is shi ed on 
the rising edge of the 
clock

Example 8.4 Synthesizable Verilog code for the barrel shifter
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Fig. 8.13 Synthesis result for the FIR filter(contd.)

Fig. 8.14 Synthesis result for the barrel shifter

8.8 Important Takeaways and Further Discussions

Following are a few important points to summarize the chapter

1. DSP applications like IIR, FIRneed to be implemented using the dedicated FPGA
blocks.

2. If DSP IPs are available, then during prototype use the vendor specified boards.
3. If the multiple FPGAs are used in the design, then take care of the design parti-

tioning of complex IIR and FIR filters.
4. Choose the DSP processors by understanding the required speed requirements

for the design.
5. Use the pipelined algorithms and pipelined controlled stages to implement the

DSP algorithms.
6. For floating point operations, the important parameters are area, speed, andpower.

If FPGAs are used, then check for the inference of the RTL code in the specific
DSP slice.
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The next chapter discusses the ASIC and FPGA synthesis and is useful to have
an understanding of the synthesis and constraints. The RTL tweaks required for the
FPGA equivalent are discussed in the chapter.
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Chapter 9
ASIC and FPGA Synthesis

ASIC and FPGA syntheses differ in many aspects. During SOC
prototyping tweak the RTL to have the FPGA equivalent logic
inference.

Abstract The chapter discusses the synthesis for the ASIC and FPGA. During the
ASIC prototyping, FPGAs are used and how the ASIC designs can be migrated to
FPGA which is discussed in this chapter. The chapter focuses on the important RTL
design concepts design portioning, block-level and chip-level synthesis to start with.
The design constraints used during the synthesis are discussed in this chapter with the
practical scenarios. The chapter also focuses on the Synopsys DC commands used
during synthesis. The gated clocks and implementation for the ASIC and FPGA are
discussed with the implementation scenarios.

Keywords Synthesis · ASIC · FPGA · Block-level synthesis
Chip-level synthesis · Constraints · Area · Speed · Power · Clock gating
Partitioning · Combinational loops · Latch inference · LUTs · CLB · Slice
Standard cells ·Macros · Hard macros · Soft macros · IPs · FSM · Optimization
Logic duplication

9.1 Design Partitioning

The deign partitioning at the top level for the better optimization and clean timing
paths can play important role for any ASIC/SOC designs. The thought should come
in the mind of the architect to achieve the better hardware and software partitioning
Consider a design scenario in which billion gate SOC has the processors, analog IPs
or blocks and other digital logic and the configuration is controlled by the software
commands. Under such circumstances, it is better to have following clarity while
partitioning the design.
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1. Can I partition the analog and digital blocks and isolate the power domains?
Answer is yes, and it is requirement of the design.

2. Can I have the partition for the digital logic depending on the multiple power
domains? Yes that is required to achieve the low power. Always partition the
design depending on the voltage domains so that functional blocks can be power
down or power up as and when required.

3. The large density digital functional blocks can be partitioned into moderate gate
count blocks and care should be taken to have the registered inputs and registered
outputs at the interface level of the blocks.

4. Partition the design depending on the clock domains. Let us have the separate
RTL design for the individual functional blocks sensitive on the different clock
edges. At the top level during the RTL integration stage, use the synchronizers
to pass the data between multiple clock domains.

5. If the design needs to be realized using the FPGA, then partition the design as
digital and analog equivalent. Use the single or multiple FPGAs to realize the
digital design. Use the external boards with the required interfaces to implement
the analog blocks such as ADCs, DACs, clocking structures and power supply
and temperature monitoring/cooling blocks.

a. In the multiple FPGA design, check for the IO availability and interface
timing while partitioning the design and it will be discussed in more details
in Chaps. 13–15.

b. Use the high-speed IOs to transfer the data between the FPGA.
c. Use the required bus topology as daisy chaining, star or mixed interconnect.

6. The larger FSM controller’s logic should be partitioned to achieve the better area,
speed, and timing. Use the gray or one-hot encoding method to realize the logic.

7. Have the information about the latency, data rate, and desired interface timing
while partitioning the design.

8. For the hardware and software partitioning, consider the performance require-
ment and use the FIFO or buffers to queue the chunk of data.

9. Have the implementation of the algorithm such as high-speed buses, processors,
DSP blocks, video decoders using RTL and use the software for configuring the
logic at the initialization phase or to store larger amount of the data.

9.2 RTL Synthesis

For the complex SOC designs, the logic and physical synthesis step is important to
achieve the desired performance for the design. During synthesis, the goal is to have
the minimum area and power. The design should have high speed. It is essential to
use the performance improvement techniques to achieve the better optimization for
the area, speed, and power. The synthesis tool uses following to perform the synthesis

1. RTL design
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2. The ASIC libraries
3. The design constraints

The outcome of the synthesis is the gate-level netlist. For the FPGA synthesis,
the synthesis tool uses the target FPGA resources such as CLBs, IOBs, DSP blocks,
BRAMs, hard processor IPs, RTL Design integration at top level is shown below
(Fig. 9.1).

The Synopsys Design Compiler (SDC) reads the standard cell libraries and the
RTL description to generate the technology-dependent gate-level netlist. Synthesis
is the process of converting the design from the higher level of abstraction to the
lower level of the design abstraction.

The synthesis tool should be efficient enough to optimize the design for the given
constraints. The inputs to the synthesis tool are libraries, RTL description using either
VHDL or Verilog, constraints. The output from the synthesis tool is gate-level netlist
(Fig. 9.2).

The synthesis tool performs many steps to generate the required gate-level netlist,
and these steps are described in Fig. 9.3.

As shown in the synthesis flow, the Design Compiler reads the DesignWare,
technology, and symbol libraries to perform the synthesis. The synthesis tool is
intelligent enough to identify the components from the DesignWare and technology
library. The technology library consists of the logic gates, flip-flops, and latches. The
complex components like comparators, adders, multipliers are part of the Design-

Fig. 9.1 RTL design integration at top

Fig. 9.2 Synthesis tool input and output
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Fig. 9.3 Synthesis steps for
Synopsys DC

Ware library. By using the components efficiently either from the DesignWare or
technology library, the DC performs the synthesis to generate the gate-level netlist.

In the next step, the DC reads the RTL either written in the VHDL or Verilog and
proceeds to the next step where it can map to the link library if it is in the gate-level
form. The synthesis tool performs the optimization of the RTL before mapping the
cells to the technology or target library.
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The synthesis tool uses the constraints, and those are area, speed, power, and even
the environmental constraints while performing synthesis. The constraints are design
specific and required for the desired or required outcome of the design.

The main important point is that the RTL designer and the synthesis team should
know about the target standard cell library so that the design can be optimized to get
the required functional outcome.

In the practical environment while using the Synopsys DC always care is taken
about the tight constraints of area, speed, and power. There aremany designs inwhich
the restriction is there on the overall area utilization. For the million gate design, it
is iterative process as it requires the intelligent design partitioning and even the tight
constraints to get the desired performance. For complex ASIC designs, the team
of RTL designer, synthesis, and timing teams works closely to realize the intended
design functionality for the given constraints.

9.3 Design Constraints

The design constraints such as area, speed, and power need to bemet, and this section
discusses the few of the Synopsys DC commands used while constraining the ASIC
designs.

Following steps are used by synthesis tool:

1. What synthesis tool does is that, it reads the DesignWare libraries, technology,
and symbol libraries.

2. Second step is to read the RTL described by Verilog.
3. Perform the optimization to map the logic using the technology library, that is,

also called as target library.
4. Use the design constraints like area, speed, and power and perform the optimiza-

tion.
5. Map the design to target library and optimize the design.
6. Finally write the optimized netlist in the (.v) or (.ddc) format.

The sample design constraint script is given in Example 9.1.
Use the above script as clk.src and to generate the reports use the following

commands Useful Commands (9.1).

9.4 Synthesis and Constraints

Consider the top-level RTL design, which is integration of the different functional
blocks. It is assumed that the design is partitioned in the better way to achieve the
optimization for area, speed, and power. If we use the bottom-up approach for the
design, then for every functional block, the block-level constraints should be met.
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The sample design constraint script is given below
/*set the clock*/
set clock clk

/* set clock period */
set clock_period 1

/* set the latency */ 
set latency 0.025

/* set clock skew*/
set early_clock_skew [expr $ clock_period/10.0]
set lae_clock_skew [expr $ clock_period/20.0]

/* set clock transition */
set clok_transition [expr $ clock_period/100.0]

/* set the external delay*/
set external_delay [expr $ clock-period*0.2]

/* define clock uncertainty */
set clock_uncertanity –setup $ early_clock_skew
set clock_uncertanity –hold $ late_clock_skew

Example 9.1 Basic clk.src script for 1 GHz design

Useful Commands 9.1 Report
generation commands Dc_shell> report_timing

Dc_shell> report_clock
Dc_shell> report_constraints-all_violators

The block-level constraints to meet the desired area, speed, and the power are
specified using the tcl’tk commands.

Why it is essential to specify the block-level constraints is one of the common
questions? The few important points are listed below:

1. The complex SOC or ASIC designs can have the multiple functional blocks and
may have multiple clock domains, power domains, and complex functionality.

2. For the better optimization the functionality of the design is partitioned into the
multiple domains. To achieve the speed, area, and power requirements the design
and optimization constraints need to be defined.

3. Consider the design having processors. Memory controllers, bus interface logic,
DSP, and video blocks. The operating frequency of the processor is 500 MHz,
DDR controller operates at 333.33 MHz, video decoder operates at 200 MHz,
and the DSP processor operates at the frequency of 250 MHz. Other glue logic
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and buses operate at the frequency of 150 MHz and the design is partitioned into
five clock domains. In such circumstances, the design constraints to achieve the
required speed, power, and area are specified in the block-level constraints.sdc
file.

4. What exactly the synthesis tool does is, it uses the RTL design, constraints with
the required libraries try to generate the gate-level netlist for these functional
blocks. The synthesis tools are intelligent enough as they go through the various
optimization phases to meet the constraints.

5. At the block level if constraints are not met, then it is essential to modify the RTL
or tweak the architecture, and it can have very good impact on the later stages of
the design.

6. This phase can even be helpful to understand and freeze the risks in the design
(Script 9.1).

set active_design proceesor_functionality
analyze –format Verilog $active_design.v
elaborate $active_design
current_design $active_design
link
uniquify
set_wire_load_model –name SMALL
set_wire_load_mode top
set_operating_conditions WORST
create_clock –period 10 –waveform [list 0 5] matser_clk
set_clock_latency 1.0 [get_clocks master_clk]
set_clock_uncertainty –setup 2.0 [get_clocks master_clk]
set_clock_transition 0.1 [get_clocks tck]
set_dont_touch_network [list tck master_reset]
set_driving_cell –cell BUFF1X –pin Z [all_inputs]
set_drive 0 [list master_clk master_reset]
set_input_delay 2.0 –clock master_clk –max [all_inputs]
set_output_delay 2.0 –clock master_clk –max [all_outputs]
set_max_area 0
set_fix_multiple_port_nets –buffer_constants –all
compile –scan
check_test
remove_unconnected_ports [find –hierarchy cell {“*”}]
change_names –h –rules BORG
set_dont_touch current_design
write–hierarchy –output $active_design.db
write–format Verilog –hierarchy –output $active_design.v

Script 9.1 Block-level synthesis using Synopsys DC [1]
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9.4.1 Chip-Level Synthesis and Constraints

At the top level, the design is integration of the different functional blocks, IPs, and
processors. The top-level constraints need to be derived depending on the requirement
of the speed, power, and area. At the initial stages of the design cycle during the
architecture level, the information about this is gathered and documented.

For example, my SOC design should work at 1 GHz operating frequency and has
the multiple clock domains. So is it essential that every functional block need to be
operated at the 1 GHz? Answer is no! The reason being the overall clocking rate to
perform the single operation in one cycle is 1 GHz and as the design have multiple
functional blocks, depending on the partition and they can be operated individually
at high speed or at low speed also.

The architect and the design teams take care of the synchronization for such
designs. For the functional- and timing-proven IPs, it can be possible to set the don’t
touch attributes during the iterative phase of synthesis and optimization (Script 9.2).

9.5 Synthesis for SOC Prototype Using FPGA

Synthesis during the prototype cycle can be performed before or after design parti-
tioning. The synthesis is the process of converting the RTL into equivalent gate-level
netlist. If we consider the ASICs, then the synthesis is the process to get the netlist
using the standard cells depending on the process node. In case of FPGA, outcome
of the synthesis is the netlist using the available FPGA resources. More about the
FPGA architecture is discussed in Chap. 11.

Depending on the target FPGA, the synthesis tool generates the FPGA netlist
and the FPGA back-end tool uses the design constraints and netlist during imple-
mentation. Most of the time during the prototype, we need to understand about the
expected speed or performance for the design and that can be accomplished by few
synthesis tools and it can be useful during early phase of the design cycle to tweak
the architectures, constraints to achieve the required performance.

For the FPGA design, the design flow from the RTL to device programming is
described in Fig. 9.4.

RTL design for the SOC prototype is one of the major milestones, and in this
milestone, the RTL is tweaked to fit into the target FPGA. This may involve the
changes in the IPs, clock resources, and resizing the memory blocks.

The design partitioning is required if the design specifications are complex and
design does not fit in the single FPGA. If multiple FPGAs are needed to prototype
and test the design, then the design can be partitioned manually or by using the
partitioning tools. The design partitioning is discussed in detail in next few chapters.

For the implementation phase, we need to generate the constraints and these
constraints are to define the required speed and pin placements. These can be used by
the back-end tools to optimize the design. Although the vendor-dependent directives
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set active_design processor
set sub_modules {processor_logic decoding bus interface memory 
interrupt_control }
foreach module $sub_modules {
set syn_db $module.db
read_db syn_db
} 
analyze –format Verilog $active_design.v
elaborate $active_design
current–design $active_design
link
uniquify
set_wire_load_model –name LARGE
set_wire_load_mode enclosed
set_operating_conditions WORST
create_clock – period 10 –waveform [list 0 5] master_clk
set_clock_latency 1.0 [get_clocks master_clk] 
set_clock_uncertainty –setup 2.0 [get_clocks master_clk] 
set_clock_transition 0.1 [get_clocks master_clk] 
set_dont_touch_network [list master_clk master_reset] 
set_driving_cell –cell BUFF1X –pinZ [all_inputs]
set_drive 0 [list master_clk master-reset] 
set_input_delay 2.0–clock master_clk –max [all_inputs]
set_output_delay 2.0–clock  master_clk –max [all_outputs]
set_max_area 0
set_fix_multiple_port_nets –all –buffer_constants
compile –scan
remove_attribute [find –hierarchy design {“*”}] dont_touch
current_design $active_design
uniquify
check_test
create_test_patterns –sample 5
preview_scan
insert_scan
check_test
compile –only_design_rule
remove_unconnected_ports [find –hierarchy cell {“*”}]
set_dont_touch current_design
write –hierarchy –output $active_design.db
write–format Verilog –hierarchy –output $active_design.v 

Script 9.2 Top-level constraints script using Synopsys DC

and algorithms at the synthesis level can optimize the design to achieve the desired
performance, it is essential to give the implementation constraints.

A place and route tool uses the FPGA netlist and the design constraints to place
and map the design for the target FPGA. The FPGA bitstream file will be loaded into
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Fig. 9.4 FPGA design flow

the FPGA to achieve the desired functionality. Although it looks simple, this process
involves multiple steps such as mapping, placement, routing, and timing analysis.

Following can be few of the back-end tools useful while prototyping the SOC

1. Floor planning tool: Consider I need to place hundreds of IOs to achieve the
performance, then what I should think? I will use the floor planning tool which
can achieve the IO placement, and for few critical designs, it can serve as the
place the logic to meet the performance.

2. Core Generators: This kind of tool is used to infer the IP cores for the specific
RTL. The objective and use of the core generator are to understand the RTL
structures and replace them by the existing IP cores available for that FPGA. In
layman’s language, it is like replacing the RTL by its FPGA equivalent logic.

3. FPGA editors: This can be used to modify the FPGA design after the placement
and routing. This can be used as debugging tool at the low level which allows
the designer to modify the FPGA block placements, routing, etc.

4. In circuit debugging tool: This allows the designer to capture and view the
internal design nodes. For more details refer to Chap. 16.

Now let us focus on the important practical aspect that how the logic is mapped
inside the FPGA? (More details in Chap. 11)
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9.5.1 How Logic Is Mapped Using CLBs?

The logic is mapped using the CLBs as each CLB consists of multiple input LUTs
and registers. If we consider the Virtex-7 architecture, then using the six-input logic
function, logic is mapped to have six input LUTs. For more number of inputs, the
LUTs can be cascaded, and for the less number of input variables, the LUTs will be
splitted to realize the function.

Consider the practical scenario where 4 or 5 inputs are used by the logic function,
then it can map the logic inside one CLB.

Shift register or distributed RAM is inferred using the SLICEM.
If we use the efficient FPGA synthesis tool, then it can detect the possibility of

the set/reset assertions for asynchronous and synchronous set and reset to avoid the
malfunctioning inside the FPGA.

9.5.2 How DSP Blocks Are Mapped?

The Virtex-7 has the dedicated DSP block and to improve the FPGA performance,
and to avoid the use of the other functional blocks, the synthesis tool can map the
DSP functionality using the dedicated DSP blocks.

Consider the multiply and accumulate function (MAC) this can be mapped using
the DSP block for the improved performance. If the DSP algorithm is more complex,
then multiple DSP blocks can be used to implement the wider range of arithmetic
algorithms. If wewish to have the pipelining in the DSP algorithm, then the pipelined
logic can be mapped by using the DSP blocks.

9.5.3 How Memory Blocks Are Mapped Inside FPGA?

We need to have the internal storage in the form of the distributed RAM or block
RAMs. The performance of the overall design depends upon the mapping of these
blocks efficiently by synthesis tool. What we need to look into is that whether the
synthesis tool infer these blocks or not?

The single- and dual-port RAMs should be inferred by the synthesis tool auto-
matically, and for the improved design performance, the adjacent pipelined registers
should be picked up automatically at the input and output. For improved speed and
area, it is essential that the synthesis tool can split the large memories into the mul-
tiple BRAMs and even they should be able to have the address and data according
to the functional requirements.

If we consider the synthesis tool features, then for the SOC design the synthesis
tools are smart and intelligent enough due to use of the algorithms to partition and
realize the design. During prototyping, the designer should take care of use of the
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vendor-dependent features of such tools to achieve the desired results. Most of the
time we observe that such process is automated in the industry by using the synthesis
scripts.

But practically what care design team should take: Let me share my experience
when I was working on one of the SOC projects during past decade!

1. The first important point I thought by visualizing the architecture that the design
is too complex and needs partitioning.

2. If my SOC functionality is larger than FPGA what I should do? I need to use the
multiple FPGAs.

3. Is it possible that I can achieve the desired speed of SOCs using FPGAs? Prac-
tically not because the SOC speed is faster as compared to FPGA.

4. Is it thatmyRTLcan directlymap on the FPGA?Answer is no; I need to tweak the
RTL and make the changes and make it FPGA resource compliant, For example,
gated clock implementation in the ASIC and FPGA differs.

9.6 Practical Scenarios During FPGA and ASIC Synthesis

This section describes few of the practical scenarios during the ASIC and FPGA
synthesis.

9.6.1 Gated Clocks and Conversions

The clock gating conversions can be accomplished at the RTL level as well as using
the EDA tool features. Using back-end flow during the clock tree synthesis, the clock
buffers can be added to balance the clock skew. The clock tree with the balanced
clock skew can be routed to get the better timing and performance. But this is not
possible for the FPGA design flow. This section describes the clock gating technique
for the ASIC/FPGA designs.

When the design functional block needs to be inactivated then the clock can be
stopped by using the clock gatingmechanism.This is used to save the dynamic power.
At the RTL level, this can be accomplished by using the clock and the clock_enable
inputs and shown in Fig. 9.5.

9.6.2 Gated Clock Implementation for ASIC

For theASIC designs, the clock gating can save the significant amount of the dynamic
power. The clock gating cells are available in the library. If enable clock gating options
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Fig. 9.5 Gated clock design

Fig. 9.6 Clock gating cell

are used according to the design requirements, then these cells can be inferred by the
synthesis tool.

The clock gating cell is shown in Fig. 9.6.

9.6.3 Gated Clock Implementation for FPGA

For theFPGAdesigns, the clock gating cells used in theASICneed to be implemented
at the FPGA fabric level. These cells as shown can be implemented using the LUT if
and of clk and clk_enable is used. But the issue is the glitches in the clock as AND
logic switch is in the clock path. So by using vendor-specific EDA tool options, they
can be implemented as shown in Fig. 9.7.

9.7 Important Takeaways and Further Discussions

Following are important takeaways from this chapter.

1. The ASIC synthesis infers the gate-level netlist using the ASIC cell library.
2. The FPGA synthesis infers the gate-level netlist using FPGA functional blocks

such as CLBs, IOBs, DSP, clocking network, BRAMs.
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Fig. 9.7 Clock gating for FPGA

3. The synthesis tool uses the libraries, RTL design, and constraints to perform the
synthesis.

4. The optimization constraints are speed, power, and area.
5. The synthesis can be performed at the block level and at the chip level.
6. The constraints can be one of the input file to synthesis tool using the (.sdc) file.
7. The design rule constraints can be max transition, max or min capacitance, and

cell degradation.
8. The design partition for the larger SOC design can yield a better performance.
9. The clock gating logic for the ASIC and FPGA is different. So during the SOC

prototype, it is essential to have gated clock conversion.

The next chapter will focus on the static timing analysis (STA), and how it is dif-
ferent for the FPGA andASIC designs. The chapter is useful for the SOC prototyping
to understand the timing and time budgeting at the different FPGA boundaries and
interfaces.
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Chapter 10
Static Timing Analysis

Under thermal equilibrium the product of the free electron
concentration and free hole concentration is equal to a constant
equal to the square of intrinsi carrier concentration.

Mass action law for semiconductor

Abstract The chapter discusses the static timing analysis (STA) and the role of the
STA engineer. The timing paths, maximum frequency calculations, input insertion
delay, and output insertion delays are discussed in this chapter with the practical sce-
narios. The Synopsys PT commands are discussed in this chapter. How to achieve the
timing performance to meet the timing constraints is also discussed with the practical
scenarios. The chapter is useful for the ASIC and SOC designers to understand the
STA concepts and techniques to overcome timing violations in the design. Even this
chapter discusses the FPGA timing analysis.

Keywords STA · DTA · Timing paths · Reg to output · Input to output
Reg to reg · AT · RT · Slack · Skew · Setup · Hold · Clock to q delay
Delay derating · OCV · Dynamic simulation · Test vectors · Coverage

10.1 Synchronous Circuits and Timing

Meeting timing of the synchronous circuit is the important task, and during STA
all the timing paths are analyzed by the timing analyzer. Consider the sequential
synchronous circuit shown in Fig. 10.1.

As shown in Fig. 10.1, the synchronous sequential circuit is driven by the common
clock source and named as ‘clk’. The outputs are Combo_out and q_out. Input to the
sequential circuit is d_in.

The timing parameters of the flip-flop are

• Setup time (tsu)
• Hold time (th)
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Fig. 10.1 Synchronous sequential circuit

Fig. 10.2 Setup and hold time of flip-flop

• Propagation delay of flip-flop (Clock to q delay) (tctoq or tpdff)

To have an understanding of these parameters, let us consider Fig. 10.2.
Setup Time: It is defined as the minimum amount of time for which data input

(Din) of a sequential element must be stable before the arrival of the active clock
edge (clock transition). In this book, the setup time is denoted by tsu.

Hold Time: It is defined as a minimum amount of time for which the data input
(Din) of the sequential device must be stable after the arrival of the active clock edge
(clock transition). In this book, the hold time is denoted by th.

Clock to q Delay: It is the propagation delay of the sequential circuit element
after the arrival of the active clock edge (clock transition). In this book, the flip-flop
delay is denoted by tpdff.

If setup or hold time is violated, then the sequential logic goes into metastable
state. During timing analysis, the timing analyzer checks for all the timing paths to
make sure that the timing constraints are met.
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Fig. 10.3 Design with metastable state

Fig. 10.4 Timing sequence with metastable output

10.2 Metastability

As stated earlier, if any of the timing parameter is violated, then the flip-flop goes
into the metastable state. Consider the scenario described in Fig. 10.3.

As shown in Fig. 10.3, the register ‘0’ is sensitive to the rising edge of ‘clk_1’ and
register ‘1’ is sensitive to the rising edge of clock source ‘clk_2’. Due to the phase
difference between the ‘clk_1’ and ‘clk_2’, the output of register ‘1’ goes into the
metastable state. The timing sequence is shown in Fig. 10.4.

As shown in Fig. 10.4. The d_in input of register 1 has changed during rising edge
of the clk_2 and hence has the setup time violation. Under such circumstances, the
register ‘1’ goes into the metastable state.

To avoid the metastability, the multistage (multiflop) level synchronizer can be
used. Figure 10.5 describes the use of the two-stage level synchronizer in the design
to resolve the metastable issue.

As shown in Fig. 10.5, although register ‘1’ goes into the metastable state, on
the next rising edge of the clock ‘clk_2’, the output ‘q_out’ is forced into the valid
state. So by adding one more registers in the output path, the metastability issue is
eliminated.

Always the register ‘1’ setup andholdparameters are violated. Soduring synthesis,
it is essential to disable the timing from ‘clk_1’ to register ‘1’ output ‘q1_out’.

The timing sequence for sampling of the ‘d_in’ using two-stage level synchronizer
is shown in the following Fig. 10.6.
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Fig. 10.5 Sampling d_in using two-stage level synchronizer

Fig. 10.6 The timing sequence using two-stage level synchronizer

Fig. 10.7 Multiple clock domain design

10.3 Metastability and Multiple Clock Domain Designs

The multiple clock domain design is shown in Fig. 10.7. As shown, two different
clock domain blocks are edge sensitive to the clock sources ‘clk_1’ and ‘clk_2’
respectively. If clock frequency is same or different, the ‘clk_1’ and ‘clk_2’ may
have the phase difference. Due to the phase difference between the ‘clk_1’ and
‘clk_2’, both clock domain logic is not triggered at the same time.

So the issue of data integrity exists while passing data between multiple clock
domains. Hence, it is recommended to use the synchronizers while passing data
between clock domain 1 and clock domain 2.
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Fig. 10.8 Clocks with the
phase difference

The clock generation using two different clock sources with the phase difference
or clock skew is shown in Fig. 10.8. As the clocks are skewed with respect to each
other, the time instance at which the sequential logic in the multiple clock domain
triggers is different, and hence, such type of design has issue of data integrity.

10.4 Timing Analysis

The era of the billion gate count design has witnessed the significant amount of
changes in the process nodes. The current process node which is used is 10 nm, and
even the process node will drop down to 7 and 5 nm during the next decade. But this
is limited due to the physical conditions and parameters. Meeting timing for any chip
is the highest priority to achieve the desired performance, and designers are spending
the higher amount of efforts in addressing the design performance. Timing analysis
can be of type static or dynamic.

10.4.1 Dynamic Timing Analysis (DTA)

As the name indicates, the dynamic simulator is used to perform the timing analysis. If
the design consists of the various functional blocks, then the timing and functionality
are verified by the dynamic simulator. So let us think about the requirements for the
DTA!

To perform the DTA,vectors logic simulators, and the timing information is
required. For the block-level timing or the chip-level timing, this methodology uses
the input vectors to exercise the functional paths depending on the dynamic timing
behavior. The main challenge in this type of methodology is the time required for
the creation of the vectors with the high level of the test coverage. So the better and
effective method is the STA as it is non-vectored approach.
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10.4.2 Static Timing Analysis (STA)

Traditional simulator has the limitation in the speed and capacity, and as there is
limited time to market and even the complexity of the chip is high, it is better to
use the STA. It is the exhaustive method of debugging, analyzing, and validating the
design timing performance. In this method, firstly the design is analyzed and then
all possible paths are timed.

The timed paths are checked against the timing requirements of the design. STA
environment can accommodate the billion gate count design as it is non-vectored
approach. As it is not based on the functional vectors, it is very fast. Still it is very
exhaustive as every path in the design is checked for the timing violations. So in
the broad way we can conclude that the STA is not to verify the functionality of the
design but it is for checking the timing.

As stated above the STA is used for the synchronous designs, and if the design
has asynchronous blocks, then the dynamic simulation needs to be performed. Even
for the mixed signal designs, the dynamic simulation can play the crucial role.

10.5 Timing Closure

The timing closure is the ability of the timing analyzer to detect and fix the timing
problems in the design as early as possible. This can be accomplished by using the
STA and also by dynamic simulation with the SDF back annotation.

If the timing is failed means the timing goals are not achieved, then the resyn-
thesis, performance improvements, micro-architecture tweaking, timing constraint
modifications, and in worst case, the redesign need to be done, and it is iterative
process.

Figure 10.9 gives information about the flow used by the timing analyzer.

10.5.1 STA Important Steps

1. Break down the design into different timing paths

a. Input-to-register timing path
b. Register-to-register timing path
c. Register-to-output timing path
d. Input-to-output timing path.

2. Calculate the delay of each timing path
3. Check the delay of each timing path against the timing constraints. If they are

met, then no timing violation.
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Fig. 10.9 Timing analyzer flow

As discussed earlier, STA is popular and efficient methodology of the timing
analysis as it is faster as compared to dynamic simulation. Block-level as well as
full chip timing can be checked using the STA as it has exhaustive timing coverage.
And another important point is, there is no any need of the vectors while performing
timing analysis. Sill this methodology has disadvantage as it reports false paths.

Figure 10.10 gives information about the various inputs used by the timing ana-
lyzer. At higher level, we can say that to perform STA following is required

• Gate-level netlist
• Constraints (.SDC)
• Extracted nets (SPEF)
• Libraries (.lib)
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Fig. 10.10 Inputs required for STA

10.6 Timing Paths in the Synchronous Design

As discussed in the above section, the synchronous circuit has four timing paths and
with reference to the Figure 10.11 they are explained in this section.

To identify the timing paths, consider the start point and endpoint. Start points are
input port or clock port, and endpoints are data input of sequential element or output
port.

• Input-to-Register Path: The path from the primary input to data input of the
flip-flop 1 (FF1) is input-to-register path.
Consider start point d_in and endpoint D of FF1. So d_in to FF1/D is input-to-
register path also called as input-to-reg path.

• Register-to-Register Path: The path from clock port of FF1 to data input of flip-
flop 2(FF2) is called as register-to-register path. FF1/clk to FF2/D. This path is
decisive factor to find the maximum operating frequency for the design.

• Register-to-Output path: The path from clock port of FF2 to the output port of
synchronous sequential circuit is called as register-to-output path.
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Fig. 10.11 Synchronous circuits and timing paths

Table 10.1 Synopsys PT
commands to define clock
and delay

Timing goal Command

Define clock period create_clock

Define input delay set_input_delay

Define output delay set_output_delay

Define clock skew set_clock_skew

As shown, consider the start point as clock port of the FF2 and endpoint as output
port of q_out. So register-to-output timing path is FF2/clk to FF2/q_out.

• Input-to-Output path: It is also called as combinational path, and it is path from
the input port to output port.
Consider the start point as input port d_in and endpoint as output port Comb_out,
then the input-to-output path is d_in to Combo_out

Table 10.1 gives information to specify the timing goals for the synchronous
sequential circuit.

The timing paths are described in Sect. 10.6.1 with more details.

10.6.1 Input-to-Register Path

As discussed earlier, the input-to-register path is from d_in to D of the sequential
element. So the timing analyzer checks that the timing in this path is met or not? For
the desired operation; the output of the Combo Logic must be stable and should not
violate the setup time. That is, D input should be stable at or before tclk – tsu. It is
shown in Fig. 10.12.

To define the input delay, use the following command
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Fig. 10.12 Input-to-register path

Command Description

set_input_delay –clock <clock_name>
<input_delay> <input_port>

Used to define the input port delay with
reference to the clock. To define 1 ns delay, use
the command
set_input_delay –clock clk 1 d_in

10.6.2 Register-to-Register Path

As discussed earlier, the timing path from start point FF1/clk to the FF2/D is called
as register-to-register timing path. Consider Fig. 10.13.

Let us think what is requirement in this path so that timing should be met? The
slack which is the difference between the data required time and data arrival time
should be positive. This indicates that the input D of FF2 should be stable before
arrival of the active edge of clock.

Setup Slack �Data Required Time (RT) – Data Arrival time (AT)
RT � tclk − tsu

Fig. 10.13 Register-to-register timing path
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AT � tpdff1 + tcombo

So RT should be greater than or equal to AT; then only setup slack is positive.
The time period of clock can be found by using

tclk − tsu � tpdff1 + tcombo

tclk � tpdff1 + tcombo + tsu

Thus, the maximum operating frequency should be f max � (1/(tpdff1 + tcombo +
tsu)). If we consider the tpdff1 �2 ns, tcombo �2 ns, and tsu �1 ns, then the maximum
operating frequency should be (1/(2+2+1)ns)�200 MHz.

For the hold check, the slack is defined as difference between the data arrival time
and data required time, and it should be positive. That is, the data should not arrive
very fast and should not violate the hold time.

Setup and hold slack calculations and the timing reports are discussed in the next
few sections.

10.6.3 Register-to-Output Path

As discussed earlier, the register-to-output path is from clk port to q_out of the
sequential element. So the timing analyzer makes sure that the timing in this path is
met or not. For the desired timing, the output of the Combo Logic should be stable
and should not violate the setup time. That is D input should be stable at or before
tclk-tsu (Fig. 10.14)

To define the output delay, use the following command

Fig. 10.14 Register-to-output path
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Command Description

set_output_delay –clock <clock_name>
<input_delay> <input_port>

Used to define the output port delay with
reference to the clock. To define 1 ns delay, use
the command
set_output_delay –clock clk 1 d_in

Fig. 10.15 Input-to-output path

10.6.4 Input-to-Output Path

As discussed earlier, the input-to-output path is from input port to output port of the
combinational element. The path is unconstrained path as the output is function of
the present input only. This is combinational path and shown in Fig. 10.15.

10.7 What Timing Analyzer Should Perform?

Timing analyzer should perform following main tasks for each corner and mode
while performing the timing checks

1. It should read all the required input files.
2. It should use the constraint file to check for the timing information.
3. It should validate the necessary inputs.
4. It should generate the necessary timing reports to indicate the violations in the

design (Fig. 10.16).

10.8 Setup Time Analysis

The section discusses the setup analysis. What the timing analyzer does while per-
forming the setup time analysis? Consider Fig. 10.17.

During the setup time analysis, depending on the operating conditions the timing
analyzer performs the analysis of the timing path. The slack which is the difference
between the RT and AT is computed. The positive slack indicates no setup violation
in this path (Fig. 10.18).
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Fig. 10.16 Tasks performed
by timing analyzer

The timing analysis tool uses different modes such as

1. Single operating conditions
2. Best-case and worst-case modes
3. On-chip variation mode

Refer Table 10.2 for the different analysis modes during the setup time check.
The script using the Synopsys PT commands for setup time check is shown in

Script 10.1.

Fig. 10.17 Synchronous design
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Fig. 10.18 Timing sequence to indicate AT and RT (slack positive)

Table 10.2 Setup time analysis [1]

Analysis mode Data path Launch path Capture path

Single operating
condition

Maximum delay
without derating

It should be late clock,
and without derating
the delay should be
maximum in the clock
path

It should be early clock,
and without derating
the delay should be
minimum in the clock
path

bc_wc mode Consider maximum
delay, worst-case
operating conditions,
and late derating

Late clock and late
derating the delay
should be maximum in
the clock path and
worst-case operating
conditions

Early clock and early
derating the delay
should be minimum in
the clock path and
worst-case operating
conditions

On-chip Variation
Mode

Consider maximum
delay, worst-case
operating conditions,
and late derating

Late clock and late
derating the delay
should be maximum in
the clock path and
worst-case operating
conditions

Late clock and late
derating the delay
should be maximum in
the clock path and
best-case operating
conditions
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Table 10.3 Hold time analysis [1]

Analysis mode Data path Launch path Capture path

Single operating
condition

Minimum delay
without derating

It should be early clock,
and without derating the
delay should be
minimum in the clock
path

It should be late clock,
and without derating the
delay should be
maximum in the clock
path

bc_wc mode Consider minimum
delay, best-case
operating conditions,
and late early
derating

Early clock and early
derating the delay should
be minimum in the clock
path and best-case
operating conditions

Late clock and late
derating the delay should
be maximum in the clock
path and best-case
operating conditions

On-chip Variation
Mode

Consider minimum
delay, best-case
operating conditions,
and early derating

Early clock and early
derating the delay should
be minimum in the clock
path and best-case
operating conditions

Late clock and late
derating the delay should
be maximum in the clock
path and worst-case
operating conditions

set active_design processor
read_db –netlist_only $active_design.db
current_design $active_design
set_wire_load_model –name large
set_wire_load_mode top
set_operating_conditions WORST
set_load 40.0 [all_outputs]
set_driving_cell –cell BUFF1X –pinZ [all_inputs]
create_clock –period 10 –waveform [0  5] master_clk
set_clock_latency 1.0 [get_clocks master_clk]
set_clock_transition 0.1 [get_clocks master_clk]
set_clock_uncertainty 2.0 –setup [get_clocks master_clk]
set_input_delay 2.0 –clock master_clk [all_inputs]
set_output_delay 2.0 –clock master_clk  [all_outputs]
report_constraint –all_violators
report_timing –to [all_registers –data_pins]
report_timing –to [all_outputs]
write_sdf–contextverilog –output $active_design.sdf

Script 10.1 Setup check [1]

The timing report is shown in Fig. 10.19. As shown, the difference between the
data required time and data arrival time is positive. This indicates no timing violation
due to positive slack.

If slack is not met then what need to do

1. Consider the late arrival signals in the data path.
2. Tweak the RTL
3. Tweak the architecture micro-architecture
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Fig. 10.19 Timing report for the setup analysis [1]

Fig. 10.20 Synchronous design

10.9 Hold Time Analysis

The section discusses the hold analysis. What the timing analyzer does while per-
forming the hold time analysis? Consider Fig. 10.20.

During the hold time analysis, depending on the operating conditions the timing
analyzer performs the analysis of the timing path. The slack which is difference
between the AT and RT is computed. The positive slack indicates no hold time
violation in this path (Fig. 10.21).

Refer Table 10.3 for the different analysis modes during the hold time check.
The script using the Synopsys PT commands for hold time check is shown in

Script 10.2.
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Fig. 10.21 Timing sequence to indicate AT and RT (slack positive)

set active_design processor
read_db –netlist_only $active_design.db
current_design $active_design
set_wire_load large
set_wire_load_mode top
set_operating_conditions BEST
set_load 50.0 [all_outputs]
set_driving_cell –cell BUFF1X –pin Z [all_inputs]
create_clock –period 10 –waveform [0 5] master_clk
set_clock_latency 1.0 [get_clocks master_clk]
set_clock_transition 0.1 [get_clocks master_clk]
set_clock_uncertainty 0.5 –hold [get_clocks master_clk]
set_input_delay 0.0–clock master_clk  [all_inputs]
set_output_delay 0.0–clock master_clk[all_outputs]
report_constraint –all_violators
report_timing –to [all_registers –data_pins] –delay_type min
report_timing –to [all_outputs] –delay_type min
write_sdf -context verilog –output $active_design.sdf

Script 10.2 Hold time check [1]

The timing report is shown in Fig. 10.22. As shown the difference between the
data arrival time and data required time is positive. This indicates no timing violation
due to positive slack (Fig. 10.22).

If slack is not met then what need to do

1. Consider the early arrival signals in the data path.
2. Tweak the RTL
3. Tweak the architecture and micro-architecture
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Fig. 10.22 Timing report for the hold analysis [1]

10.10 Clock Network Latency

If we consider any SOC chip, then the clock network latency and clock distribution
decide the performance of any synchronous design. The PLL is used as clock source,
and during STA it is essential to define the clock source and clock network latency.
The figure shows both the latencies. (Fig. 10.23).

Fig. 10.23 Latencies in design
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10.11 Generated Clock

The generated clocks in the SOC can be used as clocking source to the sequential
blocks. The clocks are generated by using the clock divider networks. Figure 10.24
shows the generated clock using the clock divider. The useful Synopsys PT com-
mands are described in Table 10.4.

10.12 Clock Muxing and False Paths

Most of the times we need to have clock multiplexing. The minimum and maximum
frequency clocks can be used in the design depending on the design requirements.
During the ASIC testing, the minimum frequency clock can be used. The false paths
between these clocks need to be reported to the timing analyzer. To set the false path,
use the command shown in Table 10.5 and Fig. 10.25.

Fig. 10.24 Generated clock

Table 10.4 Clock and generated clock commands

Command Description

create_clock –period 10 waveform {0 5}
[get_ports clk_PLL]

Used to define clock having period 10 ns. The
rising edge at 0 ns and falling edge at 5 ns

Create_generated_clock –name CLK_DIV_2
–source UPLL0/clkout –divide_by 2 [get_pins
UFF0/Q]

Generated clock CLK_DIV_2 at Q

Table 10.5 Commands to set the false paths

Command Description

set_false_path –from [get_clock Tclk_max]
–to [get_clocks Tclk_min]

Used to set the false path between the
Tclk_max and Tclk_min

set_false_path –through [get_pins
UMUX/clk_select]

To set the false path with respect to clk_select
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Fig. 10.25 Clock muxing and false path

10.13 Clock Gating

The clock gating checks need to be performed by the timing analyzer and the com-
mand described in Table 10.6 and Fig. 10.26.

10.14 Multicycle Paths

The multicycle paths in the design need to be reported. The paths can be set so that
the timing analyzer can perform the setup and hold check (Fig. 10.27).

The commands used to set the multicycle path are listed in Table 10.7.

Table 10.6 Clock gating checks commands

Command Description

create_clock –period 10 [get_ports
System_CLK]

To create the system clock of period 10 ns

create_generated_clock –name –divide_by 1
System_CLK [get pins UAND1/Z]

To get the same clock CLK_gate

Fig. 10.26 Clock gating
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Fig. 10.27 Multicycle path

Table 10.7 Multicycle path commands

Command Description

create_clock –name clk_master -period 10
[get_ports clk_master]

To create the master clock of period 5 ns

set_multicycle_path 3 –setup –from [get_pins
UFFO/Q] –to [get_pins UFF1/D]

This set the multicycle path of 3 cycles.

set_multicycle_path 2 –hold –from [get_pins
UFFO/Q] –to [get_pins UFF1/D]

This is used to move the hold check to 2 clock
cycles as setup is check at 3 clock cycle.

10.15 Timing for FPGA Designs

For any FPGA design, the timing analysis can be performed by using the timing
analyzer, and the timing reports are useful to find out whether the setup and hold
slack is met or not?

As a prototype engineer, what we need to think about is the partitioning of the
functional blocks across the FPGA fabric. The better partitioned design can yield
into the better timing and performance. Let us consider the SOC design which has
multiple clock domains and multiple power domains. For such kind of the design,
the time budgeting is important, and it can be performed at the block-level designs
and at the chip level.

Most of the complex designs do not map into the single FPGA design; under such
circumstances, we need to have the partitioning across multiple FPGA and then the
timing analysis can be performed.

What we need to consider?

1. The combinational delay (LUT Delay), the setup, hold, and the flip-flop propa-
gation delay.

2. The setup slack is defined as slack�RT-AT where RT>AT.

a. AT� tpdff + tcombo

b. RT� tclk-tsu

3. The hold slack is defined as slack�AT−RT where RT<AT.
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Fig. 10.28 Inside FPGA reg to reg path

a. AT� tpdff + tcombo

b. RT� tclk − th

4. For the multiple FPGA design, we need to consider the pad delay and onboard
delay.

10.16 Timing Analysis for the FPGA Designs

The design using single FPGA in which the logic is mapped using the CLBs and
other FPGA functional blocks. The operating frequency of such designs is based on
the register-to-register path delay, and it can be limited due to the IO delay while
transferring the data from FPGA to other associated devices.

Consider the following figure in which the logic is implemented using the mul-
tiple CLBs, and the delay between the register is LUT delay. The CLB1 and CLB2
connections are shown in the (Fig. 10.28).

So the data arrival time from CLB1 to CLB2 is register1 delay+LUT delay in the
II CLB. And data required time is T clk − tsu

Fmax � (1/(tpdff1 + tlut + tsetup))

The timing analyzer founds the register-to-register path timing, and depending on
the timing constraints the slack is computed.

10.17 How This Discussion Is Useful During Prototyping?

The above discussion can give two important aspects and can be useful in the SOC
prototyping. For more details, refer Chaps. 11–15
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LUT Register2LUT Register1

I 

I 0

CLK 

Fig. 10.29 Clock buffer delay

Fig. 10.30 Direct connection between two FPGA

1. For the single FPGA design, the logic is mapped on the FPGA fabric, and the
operating frequency of the design is based on the critical path in the design.
For the single clock domain design, if we visualize Fig. 10.29, then we can find
operating frequency for the design using

Fmax � (1/(tpdff1 + tlut + tsetup − tbuf))

2. For the design using multiple FPGA as shown, it is essential to consider the
logic delays inside FPGA (on-chip delay) and onboard delay. So the maximum
operating frequency of such design is less as compared to the single FPGAdesign
(Fig. 10.30).

tclk � tpffl + toutbuf + ton_board + tinbuf − tsu
fmax � 1/(tpffl + toutbuf + ton_board + tinbuf − tsu)

10.18 Important Takeaways and Further Discussions

As discussed in this chapter, the STA is non-vectored approach to find whether all
the timing paths are met or not? Following are key important takeaway to conclude
this chapter
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1. STA does not need the input vector.
2. STA tool uses the netlist, constraints, libraries, and SPEF.
3. The timing paths are input to reg, reg to reg, output to reg, and input to output.
4. Input-to-output path is also called as combinational path.
5. The positive setup and hold slack indicate the timing is met.
6. The maximum operating frequency for the design is based on the register-to-

register path timing.
7. For the single FPGA design, the speed of the design is based on the LUT delay,

flip-flop propagation delay, and the setup time of flip-flop.
8. The clocking skew need to be considered to find out the speed of the design.
9. For the multiple FPGA design, the speed of the design is dependent on the

interconnect delay.

The next chapter discusses the SOCprototyping using FPGAs and useful to under-
stand the role of the FPGA in the SOC prototyping.
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Chapter 11
SOC Prototyping

SOC prototyping using high-density FPGA is useful to detect the
early bugs and to reduce risks in the SOC design

Abstract The chapter discusses the SOC prototyping using FPGAs. The FPGA
functional blocks are discussed in this chapter with their use. The logic inference
using FPGA is discussed with the real-life scenarios. The chapter discusses the pro-
totyping challenges and how to overcome them. The chapter is useful to understand
the SOC prototyping basics and logic inference using FPGAs.
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11.1 SOC Prototyping Using FPGA

If we observe the evolution of the FPGA architectures during this decade, then we
can conclude the following points:

1. The FPGA architecture is complex and can be used for the SOC prototyping.
2. High-density FPGAs have the hard processor cores and other high-speed inter-

faces.
3. The million gate SOCs can be validated using the multiple FPGAs in the system.
4. The high clocking rate allows the higher speed for the prototype.
5. The FPGA IP equivalent can be integrated with the other components, and the

proof of concept can be validated.
6. The turnaround time reduces, and hence, the time to market the product drops

down significantly.
7. The early bugs at the implementation levels can be detected and fixed to avoid

the respin of ASIC/SOC.
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As the process node has shrunk to 10 nm, the complexity of design, the design risk,
and the development time has grown significantly. Themain challenge for every orga-
nization is to develop the low-cost products having complex functionality in small
silicon area. In such circumstances, the designers are facing several development and
verification challenges. To cope up with these challenges, the high density FPGAs
can be used to prototype the ASIC/SOC as it reduces the overall risk.

The verified and implemented design using high density FPGAs can be resyn-
thesized using standard cell ASIC using the same RTL (with the FPGA compatible
tweaks), constraints, and scripts. There are EDA tools available to port an FPGA
prototype on structured ASICs. This really reduces the overall risk in ASIC design
and saves money and even reduces time to market for the product.

The following are key advantages of ASIC/SOC prototyping using FPGAs

1. Low investment: The shrinking process node and chip geometries involve the
investment in millions of dollars in the early stage of design. Using FPGAs, the
investment risk reduces.

2. Accommodate the changes in the design: Due to uncontrolled market condi-
tions, there is risk involved in the design and development of products. FPGA
prototype reduces such risk as the product specifications and design can be vali-
dated depending on the functional requirements or changes.

3. System-level bugdetection: FPGAprototyping is efficient as the bugs thosewere
not detected in simulation can be addressed and covered during prototyping.

4. Functional bugs and fixes at early stage: Full system verification using FPGA
prototype can detect the functional bugs in the early stage of the design cycle.

5. EDA tools and costing: FPGA prototyping saves millions of dollar of EDA tool
cost and even it saves the millions of dollar engineering efforts before ASIC
tape-out.

6. Reduced time to market: As design using FPGA can be migrated using the
EDA tool chains onto the ASICs, it saves the time to market the product with
intended functionality.

7. Shorter design cycle: Multiple IPs can be integrated, and design functionality
can be verified and tested and that can speed up the overall delivery of product
to end clients or to customers.

8. Design partitioning and validation: Most of the cases the hardware–software
portioning is visualized at higher abstraction level. The hardware–software code-
sign can be evaluated at the hardware level, and it is a important milestone in
the overall design cycle. So the ASIC prototyping can be useful in the tweaking
of the architecture to improve the design performance. For example, if there is
additional design overhead in the hardware then the design architecture can be
changed by pushing few blocks in software and vice versa. This will give the
more efficient architecture and design.

Table 11.1 gives information about the pros and cons of FPGA and ASIC.
The ASIC prototyping is basically the design validation of idea to check for the

early functional and feasibility of the designs. The design migration from ASIC to
FPGA involves the flow from RTL design to implementation and may be useful in
the upgradation of design with additional features.
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Table 11.1 Comparison of FPGA versus ASIC implementation [3]

FPGA Hard copy Structured ASIC Standard cell
ASIC

NRE, mask, and
EDA tools

Up to a few
thousand US$, so
the overall cost is
low

Couple of
hundred thousand
US$ for FPGA
conversion and
masks. So the
overall cost is
moderate

A couple of
hundred thousand
US$ for intercon-
nect/meta one
mask so the
overall cost is
moderate

A million US$
depending on the
design
functionality. So
the cost is high

Unit price High Medium–low Medium–low Low

Time to volume Immediate Almost around
8–10 weeks. The
additional
conversion time
may require for
other structured
ASIC products

Almost around
8–10 weeks. The
additional
conversion time
may require for
other structured
ASIC products

Almost around
18 weeks +
conversion time
of another 18
weeks

Engineering
resources and
cost

Minimum Minimal from
developers but
other structured
products may
require the
additional
engineering
resources

Nominal but for
the other
structured ASIC
products may
require the
additional
engagement of
the resources

High as most of
the work requires
the development
from scratch and
requires good
support from
back-end team

FPGA prototype
correlation

Same device For hard copy
structured ASIC:
Nearly
identical—same
logic elements,
process, analog
components, and
packages

It depends upon
the type of IP
used and the
functionality.
Same RTL but
potentially
different
libraries, process,
analog, and
packages

Same RTL but
potentially
different
libraries, process,
analog, and
packages

The following are the key points need to be considered during ASIC prototyping
and design migration using high-end FPGA.

1. Select the suitable board: Use the universal prototype board as it saves the time
of almost 4 months to 12 months for the high-speed prototyping development.

2. Partition the design for the better prototype: Choose the FPGAdevice depend-
ing on the design functionality and gate count. It may not be possible to fit whole
ASIC into single FPGA even if we use the high-end families of Intel FPGA or
XILINX FPGAs. So the practical solution is use of multiple FPGAs. But the real
issue is the design partitioning and the intercommunication between multiple
FPGAs.



200 11 SOC Prototyping

If the design is well defined and partitioned properly, then themanual partitioning
into multiple FPGA can give the efficient results. If the design has high density
and has complex functionality, then the use of automatic partitioning can play
an efficient role and can result into the efficient prototype.

3. Get the FPGA equivalent of the ASIC design: As the design library for ASIC
and FPGA is totally different, the key challenge is to map the primitives. So
it is essential to map the directly instantiated primitives during synthesis, and
during the implementation level that is post-synthesis, all the primitives from
ASIC library need to be remapped for getting the FPGA equivalent design.

4. Pin multiplexing: High-end FPGA may have 1000–1500 pins, and if single
FPGA is sufficient to prototype the design, then the prototype has few challenges.
But if IO pins required more than the pins available in single FPGA, then the real
issue is due to FPGA interfaces and connectivity. The issue can be resolved by
using the partitioning with the signal multiplexing. This will ensure the efficient
design partitioning and efficient design prototype. This is discussed in Chaps.
14 and 15 with more details.

5. Use of global clock sources: Implementation of single clock domain design
prototype is easy using FPGAs. But if the design has more than one clock, that
is, multiple clock domains then it is quite difficult to use the clock gating and
other clock generation techniques during prototype. So the migration of ASIC
design into FPGA needs much more efforts and sophisticated solutions. One of
the efficient solutions is to convert the larger designs into smaller design units
clocked by the global clock source.

6. Use of memories and memory models: The memory models used in the FPGA
are different as compared to ASIC. So it is essential to use the proper strategy
during memory mapping. Most of the time the synthesized memory models are
not available. Under such a scenario, the best possible solution is to use the
prototyping board with the requirement specific memory device.

7. Full functional test: The full functional testing and debugging are one of the
main challenges in the ASIC prototyping. During this phase, it is essential to use
the debugging platform which can give the visibility of the results like speed and
functional testing results.

The ASIC prototyping is achieved by using industry standard leading tools like
Design Compiler FPGA. The Design Compiler is industry’s leading EDA tool used
to get best optimal synthesis result and best timing for the FPGA synthesis. The basic
flow for the ASIC prototyping is shown in Fig. 11.1, and in the subsequent chapters,
we will discuss the multiple FPGA design to get the efficient prototype.

11.2 High-Density FPGA and Prototyping

Xilinx and Intel FPGA are the market leaders in the SRAM-based FPGA. Xilinx
has almost around 50–53% market share, and share of the Intel FPGA is around
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Table 11.2 Xilinx and Intel high-end FPGA [1, 2]

Technology (nm) Low end Mid range High performance

120/150 Virtex II

90 Spartan 3 Virtex-4

65 Virtex-5

40/45 Spartan 6 Virtex-6

28 Artix-7 Kintex-7 Virtex-7

20/16 Kintex UltraScale Virtex UltraScale

130 Cyclone Stratix

90 Cyclone II Stratix II

65 Cyclone III Arria I Stratix III

40 Cyclone IV Arria II Stratix IV

28 Cyclone V Arria V Stratix V

20/14 Arria 10 Stratix 10

33–35%. They also offer the one-time programmable (OTP) and nonvolatile devices.
Table 11.2 gives information about the devices offered by Xilinx and Intel FPGA.

Fig. 11.1 ASIC prototype flow [3]
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Fig. 11.2 Xilinx 7 series FPGAs

Nowadays, the FPGA devices are available with 14–16 nm technology and they
are suitable for the complex SOC design emulation and prototyping. Zynq, Kintex,
Virtex are few of the devices from Xilinx and can be used for the high-performance
prototyping.

Intel FPGA also offers the FPGAwith the process node 14 nm, and they have high
performance. Few of the high-performance Intel FPGAs are Arria 10 and Stratix 10.

11.3 Xilinx 7 Series FPGA

Xilinx 7 series FPGA has the technology node of 28 nm and unified architecture
with the voltage levels of 1 V. The FPGA architecture is scalable with common
logic building blocks like CLBs, IOBs, transceivers, DSPs, PCIe, ADCs, and Clock
Management Tiles (CMT). If we consider the high-end Virtex family architecture,
then the architecture has the 3D multidie stacked silicon interconnects (SSI), up to
1200 user pin IOs, up to 8 Mbyte RAM, up to 2 M logic cells, and 2.4 M flip-flops.
The mid-range series of this architecture is Kintex and low end is Artix.

For more information, please visit www.xilinx.com for the architecture and pack-
age information of these FPGAs. Figure 11.2 gives information about the presence
of different functional blocks in Xilinx 7 series architecture (Table 11.3).

http://www.xilinx.com
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Table 11.3 Xilinx 7 series resources

Max. capability Spartan-7 Artix-7 Kintex-7 Virtex-7

Logic cell 102K 215K 478K 1955K

Block RAMa 4.2 Mb 13 Mb 34 Mb 68 Mb

DSP slices 160 740 1,920 3,600

DSP
performanceb

176 GMAC/s 929 GMAC/s 2845 GMAC/s 5335 GMAC/s

Transceivers – 16 32 96

Transceiver
speed

– 6.6 Gb/s 12.5 Gb/s 28.05 Gb/s

Serial bandwidth – 211 Gb/s 800 Gb/s 2794 Gb/s

PCIe interface – x4 Gen 2 x8 Gen 2 x4 Gen 3

Memory
interface

800 Mb/s 1,066 Mb/s 1,866 Mb/s 1,866 Mb/s

VO pins 400 500 500 1,200

VO voltage 1.2–3.3 V 1.2–3.3 V 1.2–3.3 V 1.2–3.3 V

Package options Low cost, wire
bond

Low cost, wire
bond, lidless
flip-chip

Lidless flip-chip
and high-
performance
flip-chip

Highest
performance
flip-chip

aAdditional memory available in the form of distributed RAM
bPeak DSP performance numbers are based on symmetrical filter implementation

Important features of the Xilinx 7 series FPGA are shown in Fig. 11.2, and the
key resources are CLB, BRAMs, DSP blocks, clocking resources, IO blocks, in-built
IPs, routing and interconnect resources, transceiver and system monitor features.
This section discusses them with few considerations which can be useful during the
prototyping.

11.3.1 Xilinx 7 Series CLB Architecture

The Xilinx 7 series CLB is shown in Fig. 11.3, and as shown, it has two slices per
CLB and each CLB consists of six input LUTs; two slices are named as SLICEM
and SLICEL: SLICEM consists of RAM/SR, and SLICEL consists of only logic.
As shown, it has four flip-flops or latches and can be configured depending on the
bitstream of the functionality. The CLB architecture has wide multiplexers and carry
chain logic. So the architecture of CLB is efficient enough to implement six inputs
and multiple output combinational or sequential logic.
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Fig. 11.3 Xilinx 7 series CLB architecture [2]

11.3.2 Xilinx 7 Series Block RAM

As discussed in Chap. 9, the BRAMs are used in many applications and the architec-
ture of BRAM is vendor dependent. They can be configured using vendor-dependent
EDA tool for the required capacity. TheXilinx 7 series architecture has 36KBBRAM
which can be visualized as 2 × 18 KB BRAM. The BRAM is synchronous RAM
and can be cascaded without any logic overheads to get 64K × 1. The BRAM can
be used as single port and dual port. In the dual-port mode, the 18 KB BRAM can be
used and configured as 18K × 1, 9K × 2, 8K × 4, 4K × 9, etc., and 36 KB BRAM
can be used as 1K × 36, 2K × 9, 4K × 9, etc. The BRAM architecture has built-in
error correction (64-bit ECC), and they can be used also in FIFO mode (Fig. 11.4).

All kinds of the SOC design use the memories of type RAM, ROM, content
addressable. So let us think that how these kinds of memories can be implemented.
Either the memories can be instantiated from the cell library or from memory gen-
erator.

To implement the smallmemories of fewbits, theLUTs can be used. It is important
that these memories can be efficient enough to load, store, and pass the data. But
to have the better and efficient architecture for the design instead of distributing the
memories over the FPGA fabric, it is always better to use the BRAMs. The main
features of BRAM are:
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Fig. 11.4 Xilinx 7 series
BRAM [2]

1. Synchronousmemory: BRAMs can implement the synchronous single- or dual-
port memory. One of the real beauties of such memory blocks is that when
configured as dual-port RAMeach port can operate at different clock frequencies.

2. They can be configured: The BRAM block is dedicated dual-port synchronous
RAM block and can be configured as discussed above. Each port can be config-
ured independently.

3. BRAMs and their use in the FIFO designs: The BRAMs can be used to store
the data and as they are dedicated and configured. With additional logic FIFOs
can be implemented using BRAMs. The depth of the FIFOs can be configured
with the restriction that both the read and write side should have same width.

4. Error correction: Consider the BRAM is configured as the 64-bit RAM, then
each BRAM can store additional Hamming code bits. These bits are used to
perform the single-bit and double-bit error corrections during the read process.



206 11 SOC Prototyping

Fig. 11.5 Xilinx 7 series DSP slice [2]

For 64-bit BRAM, each BRAM can store the 8-bit Hamming code. The error
correction logic can be also used while writing or reading from the external
memories.

So let us think how the BRAMs are inferred?

The synthesis tool partitions the larger memories into small blocks, and each block
can be implemented using BRAM. Effectively in the simple words, the BRAMs are
very effective building block which is inferred automatically during synthesis and
they are combined to model the wide range of memories used for the SOC.

11.3.3 Xilinx 7 Series DSP

The Xilinx 7 series DSP48E1 slice architecture is shown in Fig. 11.5, and it supports
96-bit multiply accumulate (MACC) operation. DSP slice has 25-bit preadder, 25 X
18-bit signed multiplier, and 48-bit ALU. Also to implement the DSP algorithms,
the necessity of the shifter can be accomplished by using 17-bit shifter and pattern
detector.

The slice also has cascade paths to implement wide range of DSP functions and
algorithms. It also provides the implementation of pipelined logic for the 12/24 bit
of the data.
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Fig. 11.6 Xilinx 7 series clocking [2]

11.3.4 Xilinx 7 Series Clocking

For any design, the performance is dependent on the clock generation logic and
architecture used for clocking the multiple CLBs. The clocking architecture for the
Xilinx 7 series devices is shown in Fig. 11.6 [2], and as shown, the clock is divided
into the clock regions, and effectively, it is half-width for every 50 CLBs. If we try to
perceive the architecture closely, then we can conclude that every clock region can
be treated as group of 20 DSPs, 10 BRAMs, 4 transceivers, 50 IOBs, and PCIe.

As shown in Fig. 11.6, it has CMTs and the tiles are used adjacent to IO columns,
that is, one tile per region and two columns per device. It has one center clock spine,
that is, 1 horizontal clock row/region.

11.3.5 Xilinx 7 Series IO

As discussed in the earlier section, the overall performance of the SOC is dependent
on the available IOs and their bandwidth while exchanging the data. The high-range
IOBs support standard up to 3.3 V, and the high-performance IOB supports the
standard up to 1.8 V. The Xilinx 7 series has various types of IOs, and they are listed
in Table 11.4.
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11.3.6 Xilinx 7 Series Transceivers

The architecture has the low-power gigabit transceiver. Due to low-power architec-
ture, the chip-to-chip interface is optimized and this is one of the powerful features
of this FPGA. The high-performance transceiver is capable to support the data rate
from 6.6 to 28.05 Gb/s depending on the family of the Virtex-7 FPGA.

The transceiver count is 16 in the Artix-7 FPGA family, up to 32 transceivers in
the Kintex-7 family and up to 96 transceivers in the Virtex-7 family.

To improve the IP portability, the architecture of the serial transceiver uses the ring
oscillators and LC tank circuit. The transmitter and receiver circuits are different,
and they use the PLL to multiply the reference clock by the programmable number
up to 100 to get the bit serial clock.

11.3.6.1 Transmitter

The following are the key features of gigabit transmitter:

1. The transmitter is parallel to serial converter with conversion ratio of 16, 20, 32,
40, 64, or 80.

2. The GTZ transmitter supports up to 160-bit data width.
3. It uses TXOUTCLK used to register the parallel data.
4. The incoming parallel data are fed through an optional FIFO, and to provide the

sufficient number of transitions, it has additional support of 8 B/10 B, 64 B/66 B
encoding schemes.

5. The output of these transmitters drives the PC board with the single-channel
differential output signal.

6. To compensate for the PC board losses, the output signal pair has programmable
signal swing.

7. To reduce the power consumption, this swing can be reduced for the shorter
channels.

Table 11.4 Xilinx 7 series IOs

S. No IO Description

1 Input–output block
(IOB)

The architecture has 2 columns per device and 50 IOBs per
bank. Two distinct IOB types are high range and high
performance

2 High-speed serial IO
transceiver

Transceivers are available in quad that is four per block. They
have different types and multiple standards:
GTH/GTP/GTX/GTZ with the bandwidth of 3.75–28 Gbps

3 PCI express (PCIe)
blocks

They are build on GTX serial IO transceivers, and they are
compatible with the Gen 1, Gen 2, and Gen 3 protocols
having 2.5, 5 and 8 Gbps bandwidth

4 XADCs For every analog to digital converter, there is analog sensor
and the architecture has 12-bit two ADCs
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11.3.6.2 Receiver

The following are the key features of gigabit receivers:

1. The receiver is serial to parallel converter with conversion ratio of 16, 20, 32, 40,
64, or 80.

2. The GTZ receiver supports up to 160-bit data width.
3. To guarantee sufficient data transition, it uses non-return-to-zero (NRZ) encod-

ing.
4. The parallel data are transferred to the FPGA using the RXUSRCLK
5. For short channels to reduce power consumption by almost 30%, the transceiver

offers special low-power (LPM) mode.

11.3.6.3 In-Built IPs

Nowadays, FPGAs aremore capable to be used in the communication, medical imag-
ing, and networking areas due to available PCIe, Ethernet MAC, Phy, and processor
cores on the FPGA fabric.

The Xilinx Virtex-7 series FPGA has the PCIe, Ethernet MAC, Phy integrated on
the FPGA fabric.

• Ethernet: It can operate with the speed of 2.5 Gbits/s, and the Ethernet block is
designed with the IEEE standard 802.3-2005

– The four tri-mode (10/100/1000 Mb/s) MAC blocks can be connected to the
FPGA fabric and transceivers.

• PCIe: The FPGA has the integrated interface block for the PCI express and can
be configured as the endpoint. It can operate at the speed of the 2.5 Gbit/s and 5
Gbit/s data rate.

• CPU hard core: The optimized ARM IP core can run at the higher speed (10
times more) as compared to RTL, and it can be used during prototyping if these
SOC processor core features are matching with the available IP core. If multiple
processors are required during the prototyping, then use the multiple FPGAs with
the partitioned logic but this may reduce the performance of the prototype due to
the bus access time. These blocks are not directly inferred by synthesis tool but
need to be instantiated using core generators.

11.3.7 Built-in Monitor

It can be used during prototyping to get the thermal and power supply information,
and it does not need any instantiation in the design. Once the power connections are
made, then using the Test Access Port (TAP) the data can be accessed at any time.
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11.4 Important Takeaways and Further Discussions

1. The moderate gate count FPGA consists of the CLBs, BRAM, routing and inter-
connect resources, DSP slices, IO blocks, and clock management network.

2. The FPGA architecture is vendor specific, and the programming can be achieved
by using vendor-specific EDA tool chain.

3. FPGAs are used extensively during this decade for the prototyping and for the
emulation.

4. The emulation using FPGA can be cost-effective and efficient way to test the
functionality to achieve the desired performance.

5. The high-end FPGAs from Xilinx and Intel can be used to validate the SOC
design, and these FPGAs consist of the processor core which operates on higher
clock frequency.

6. For SOC design and prototyping, the hardware and software partitioning can play
important role and the overhead of the communication between the hardware and
software can be reduced by using the pipelining and multitasking.

7. The IO interface bandwidth and multitasking features need to be incorporated
into the design to achieve the required design performance.

8. The hard processor IP cores can be used during prototyping if the SOC processor
core feature matches with the available IP core.

This chapter has given understanding about the FPGA functional blocks. Now the
main question is that whether FPGA synthesis and ASIC synthesis yield to the same
result. Answer at high level is no! The reason being for ASIC the netlist consists of
the standard cells and macros. For the FPGA synthesis, the logic is inferred using
CLBs (LUTs, registers, and other cascade logic), BRAMs, DSP blocks, transceivers,
and other FPGA vendor-specific blocks.

The next chapter focuses on the SOC prototyping guidelines. While SOC pro-
totyping we need to have modification in the ASIC/SOC RTL (clock gating logic,
clock enable logic,memory blocks, and IOpads), and it is discussedwith the practical
considerations in the next chapter.
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Chapter 12
SOC Prototyping Guidelines

Partition the design into multiple FPGAs using the automatic
partitioning. The partitioning tool can give the better
partitioning results.

Abstract The chapter discusses important design guidelines used during the SOC
prototyping. The prototyping performance is based on how the design is partitioned
into multiple FPGAs? What is IO speed and bandwidth? And how synchronizers
are used? The chapter focuses on all these aspects in much more detail with the
practical examples and considerations. Althoughmost of the guidelines are discussed
in the previous few chapters, in this chapter they are documented to have better
understanding and their use during SOC prototyping.

Keywords Partitioning · Register IO · Combinational loop · Oscillatory behavior
Combinational output · Unintentional latches · Synchronous designs
Asynchronous designs · Multiple clock domain designs · Clock gating
Multiple FPGA partitioning · TDM · LVDS · SERDES
Combinational boundaries · Sequential boundaries
As discussed in the previous few chapters, the prototype engineer needs to consider
many aspects to achieve the better performance for the SOC prototype. If we try
to understand this in depth by considering the speed of the SOC, logic complexity,
multiple clock domains and multiple power domain designs, then we can conclude
that the million gate SOC prototype cannot be realized using the single FPGA. So
the design needs to be partitioned into multiple FPGAs. The chapter discusses the
SOC design guidelines and recommendation to have the better FPGA platform.
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12.1 What Guidelines I Should Follow During SOC
Prototyping?

What I should think about the efficient prototyping platform to validate the SOC?
This is the first fundamental question which needs to be answered! The answer is
the platform should have the efficient architecture and the better test and debug
plan to achieve the desired performance for the SOC! The following section gives
information about the same:

1. Allocate the primary and secondary responsibilities: It is very much required
to allocate the primary and secondary responsibilities to the teammembers work-
ing for the prototype. It is always advisable to have the communication between
the RTL design team and the SOC prototype team. This will yield into the better
result, and both teams will be able to understand the risk during the design and
prototype.

2. Comparative milestones: It is advisable to compare the result of the SOC proto-
type with the golden reference. This comparative method is useful to understand
the stage of the prototype. For example, the functional converge during verifi-
cation is 97%, and at the prototype level, it is almost 80%. If this information
is captured, then the improvements can be made in the existing design/test and
debug environment to achieve the higher coverage at the board level also.

3. Version control: Use the version control for the software, and the RTL modifi-
cation as the database is useful during the SOC prototype cycle.

4. List of deliverables and milestones: Create the database of the deliverables
or milestones for the prototype. Following can be the deliverables for the SOC
design

• System requirement specifications
• Risk and dependability document
• C/C++functional golden reference design
• Architecture of the SOC
• Micro-architecture for the SOC
• Clocking network and distribution
• Pin count of the SOC and their functionality
• RTL design versions
• RTL verification plan and versions
• SOC synthesis and timing scripts with the design constraints
• Timing, area, and power reports for the individual functional blocks
• Top-level area, timing, and power constraints and the reports
• Implementation constraints and target FPGA architectures
• Multiple FPGA partitioning and board layouts
• Test and debug plans
• Technology-independent design: Have a practice to use the technology-
independent design. To preserve the RTL, use the ‘define and ‘ifdef macros
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12.2 RTL Modifications to Have FPGA Equivalent

There are multiple scenarios in which the RTL modifications are required during the
SOC prototype. Few of them have been listed in this section:

1. Gated clock instantiation: The gated clock structure for the SOC may not be
matched with the FPGA equivalent structure, and hence, it is essential to modify
the RTL to infer the gated clock structure (Figs. 12.1 and 12.2).

2. SOC IPs: Most of the IPs the RTL is not available, and hence, it is essential to
have the FPGA equivalent of such IPs.

3. ASIC/SOC memories: The memory structure for the ASIC or SOC is not iden-
tical with the FPGAmemories, and hence, it requires the modification during the
prototype stage.

4. Top-level pads: AS FPGA tool does not understand about the instantiation of
the pad, and hence, it is essential to modify them during the prototype. As it does
not handle the IO PAD in the RTL and infers the FPGA PAD. So need to leave
the pads out with dangling connections inactive or to the top-level boundary. For
the prototype, replace each IO pad instance with synthesizable model of FPGA
equivalent.

Fig. 12.1 Gated clock used for the design

Fig. 12.2 FPGA equivalent clock gating
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Fig. 12.3 FPGA basic IO cell

The model should have the logical connections at the RTL level and that can be
done bywriting small piece of code using theVerilogRTL. For the efficient prototype,
prepare the SOC pad library. The basic FPGA IO cell is shown in Fig. 12.3.

5. IPs in the netlist forms: The netlist form may not be the FPGA equivalent and
hence needs modification during prototype.

6. Leaf cells: Leaf cells from the ASIC librarymay not be understood by the FPGA,
and hence, it needs modifications.

7. Test circuitry: The Built-In Self-Test (BIST) and other test or debug circuit need
to have the FPGA equivalent and hence needs the modification.

8. Unused inputs: For the unused input pins, it is essential to tweak the RTL.
9. Generated clocks: During prototype to achieve the better performance, the gen-

erated clocks need to be modified by its FPGA equivalent.

12.3 What Care I Should Take During Prototyping?

12.3.1 Avoid Use of Latches

Although the latch-based design is better to save the power, it is advisable to use
flip-flop based design. The flip-flop based design can guarantee the clean timing
paths.

12.3.2 Avoid Longer Combinational Paths

As inside the FPGA, combinational logic is mapped using the LUTs, and it is recom-
mended to avoid the longer combinational paths. Although the LUT delay is uniform,
the longer combinational paths degrade the performance of the SOC prototype. It
is advisable to break the long combinational paths into the shorter paths by using
the pipelined registers. Although there is additional overhead on the area due to use
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Practical Scenario 12.1 The impact of registered output

of the pipelined register, the shorter path design is best placed, mapped, and routed
using the adjacent CLB resources. The practical scenario is described in Example
(Practical Scenario 12.1 and 12.2).
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Practical Scenario 12.2 Registered inputs and outputs

12.3.3 Avoid the Combinational Loops

Toavoid theoscillatory behavior, it is recommended to avoid the combinational loops.
The oscillatory behavior is unpredictable, and it may be due to the missing signals
in the sensitivity list, incomplete case statements, incomplete nested if statements.

12.3.4 Use Wrappers

Most of the FPGAvendor supports the RTL description in the generic logic form or in
the Synopsys DesignWare component form. So do not use the technology-dependent
cells. At the leaf level, introduce the technology-specific details.

It is mandatory to take care that the source changes should have the lesser impact
on the design. For this use thewrappers andmake changes inside the design elements.
If the SOC architecture uses RAM, then make changes inside the library elements
rather than in the RTL. This improves overall portability of the design.
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12.3.5 Memory Modeling

If we consider the SOC design, then the memory is technology specific and may not
be FPGA equivalent. Under such circumstances, use the FPGA compatible memory
versions during prototype. As stated earlier, use the wrappers around the technology-
dependent elements in the design. This should be done for the macros, RAMs in the
technology library.

12.3.6 Use of Core Generators

Use the Xilinx core generators and specify the target technology, core type, and
initialization sequence. TheFPGA tool is used to generate the netlist and initialization
files. Place and route tool uses the netlist to perform the placement of the functional
block on the FPGA fabric. Initialization can be accomplished by the template files.
Instantiate the template files in the design. Most of the time we observe that the
tool-generated wrapper file consists of the functional stimulus data and can be used
for functional simulation of the design.

12.3.7 Formal Verification

The big question which needs to address is that how I can verify the functionality of
FPGA and SOC RAM? Whether they have the same behavior or not? The answer
is simple; it can be done by using formal verification (FV) during the early stage of
prototyping. This can verify the equivalence checking for the FPGA and SOCRAM!

12.3.8 Blocks Not Mapping on the FPGA

The analog blocks, IPs, may not be directly mapped on the FPGA as the RTL
code/netlist of these blocks is not available. Under such circumstance, use the eval-
uation boards supplied by the IP vendor or design the functional equivalent FPGA
for the IPs and interface them with the FPGA.



218 12 SOC Prototyping guidelines

12.3.9 Better Architecture Design

It is always better practice to have the efficient architecture andmicro-architecture for
the SOC and FPGA designs. The architecture document should have the information
about the tweaking or modification required for the FPGA prototype.

12.3.10 Use Clock Logic at Top Level

For fine portability and modularity, keep the clock distribution/generation logic at
the top level.

12.3.11 Bottom-Up Approach

Use the bottom-up approach for the design, and this can be good to generate the
constraints at the block level and chip level. One can think about keeping the high-
level modules free from the use of parameters and generics.

12.4 SOC Prototype Guidelines for Single FPGA Design

If the design is moderate gate count, then the design can be mapped using the single
FPGA. Under such circumstances, what care we should take?

1. Partition the design to have the architecture equivalent functionality using the
FPGA resources.

2. Instead of using the distributed RAM, use the BRAMs.
3. Use the DSP blocks to infer the DSP functionality.
4. Use the 60–70%of the resources of FPGA that will give the room for the designer

and prototype team to add the functionality.
5. Use the logic replications and resource sharing techniques for the better perfor-

mance.
6. Have a clock network in the separate block, and use the synchronizers to pass

the data between the multiple clock domains.
7. Use the high-speed IOs for data transfer between the FPGA and other associated

peripherals, controllers.
8. Use the TDM and LVDS for the data transfer across the FPGA boundaries.

Few Design scenarios are listed below
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Practical Scenario 12.3 The design without resource sharing

12.4.1 Practical Scenarios and Use of Resources

See Practical Scenarios 12.3 and 12.4
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Practical Scenario 12.4 Performance improvement using resource sharing

12.4.2 Efficient Use of FPGA Resources

See Practical Scenario 12.5

12.4.3 Use of Multiple LUTs in the FPGA Design

See Practical Scenario 12.6 and 12.7
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Practical Scenario 12.5 LUT uses to implement the combinational design

12.5 Prototyping Guidelines for Multiple FPGA Designs

If the design has million gates, then obliviously design does not fit inside single
FPGA. Under such circumstances, we need to have the multiple FPGA designs. As
stated earlier, the prototype performance of the multiple FPGA designs is based on
how the design is partitioned. The better partitioning design can yield into the better
speed and performance of the design. Following are few of the recommendations
which are useful in the multiple FPGA designs

1. Have the partition of the design into analog and digital blocks.
2. Use daughter cards for the analog interface with the FPGA. That is, using the

separate boards for the ADC and DAC logic
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Practical Scenario 12.6 Parallel logic using multiple LUTs

3. Partition the design by using the partitioning tool and estimate the resources
required for the design.

4. Choose the target FPGA device and use only 60–70% of the FPGA resources.
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Practical Scenario 12.7 Parallel logic using multiple LUTs (contd.)

Fig. 12.4 Multiple FPGA synchronous designs

5. Have a partitioning of the design by considering the requirement of high-speed
IOs, LVDS, architecture boundaries and interfaces.

6. Use themultiple FPGAs in the required topology, and for the pin count reduction,
use the TDM.

7. Use the registers available in the IO blocks to have the registered outputs and
registered inputs. Consider Fig. 12.4 where the registered output from the FPGA
1 drives the registered input at FPGA II. Both the FPGAs are driven by the clk1.
Under these circumstances, the design can be fully synchronous and results into
the better performance.

8. It is not recommended to have the combinational partitioning across the FPGA
boundary as it increases the delay in the critical path and reduces the perfor-
mance of the design. As shown in Fig. 12.5 the design using FPGA design is not
partitioned rightly as it has combinational boundaries. So the overall combina-
tional delay between two sequential elements is the addition of the combinational
delay and results into the longest critical path. Such type of scenarios needs to
be avoided during the design partitioning.
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Fig. 12.5 Combinational boundaries across FPGA

Fig. 12.6 Interface using direct connection

12.5.1 Interfaces and Connectivity

The interface and connectivity between the multiple FPGAs are one of the factors
which limits the desired performance of the FPGA. The reason is being the intercon-
nect delay (onboard delay). If the onboard delay is minimized, then the prototype
performance can be better. Consider Fig. 12.6 in which the FPGA 1 is passing the
data to FPGA 2. In such design, what we need to consider is the onboard delay due
to the connectivity between two FPGAs. So the overall speed of the prototype is
depending on the on-chip delay (FPGA logic delays) and onboard delay.

If we use the direct interconnect, then this delay can be maximized; if we use
the connectors, then the delay can be moderated; and if we use the switch matrix to
establish the connectivity, the delay can be minimized.

12.5.2 Clocking and Speed of the Design

It is impossible to have the same clocking speed for the FPGAs as SOCs are faster
as compared to FPGA. So it is recommended to have the FPGA prototype using the
slower clock speed. If it is Virtex-7, then better FPGA prototyping can be achieved
at speed of 150 MHz. The major goal is to test the functionality and the test cases
passing to validate the FPGA prototype for the SOC design.
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12.5.3 Clock Generation and Distribution

To maintain the uniform clock skew, the clock distribution logic should have uni-
formity in the delays. The PLL can be used to generate the clocks, and the clock
network on the board should have the symmetrical routing so that the wire delays
and skew can be uniform.

As shown in Fig. 12.7 the clk1 to clk4 is generated from the PLL. It can be
on-board PLL, and the clocks to these FPGAs are distributed. The board designer
should take care of the symmetrical distribution of the clocks for the uniform clock
latency. The better clock distribution can give the better performance results for the
synchronous design.

To have the clock distribution for the design having single clock, the clock tree
can be created and is shown in Fig. 12.8.

Fig. 12.7 Clock generation logic for multiple FPGAs

Fig. 12.8 Clock tree for the uniform latency
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12.6 IP Use Guidelines During Prototype

The IP models available from the vendors can be used for the simulation but can be
used for the prototype. Hence, it is recommended to have the IP equivalent logic on
the add-on board. Interface the add-on boards with the SOC prototype platform and
then perform the testing for the same.

IPs are available in the following format, and the prototype team needs to use the
IPs during the design cycle at the different stages.

1. RTL Source code of IP: In this type of IP open-source code or the license version
of the IP source code is available. The source code using VHDL or Verilog can
be available.

2. Soft IP: This type of IP cores is sometimes encrypted versions, and they need to
have some processing during the design and reuse.

3. IPs in the netlist form: They are available in the form of the presynthesized
netlist of the SOC components or Synopsys GTECH.

4. Physical IP: They are also called as hard IPs, and they are pre-laid out by the
foundry.

5. Encrypted Source Code: The RTL is protected with the encrypted key and must
be decrypted to get the RTL source.

If we consider the Virtex-7 device, then the AES encryption key is available for
the protection, and the encryption key is 256-bit key and can be used to protect the
design.

12.7 Guidelines for Pin Multiplexing

AS SOC has larger pin counts, and FPGA pin count may not be sufficient. To reduce
the pin count that uses the pinmultiplexing, consider the figure inwhich the processor
is interfaced with the IO and memory devices. If the separate address and data
bus which is used, then overall pin count is high. To reduce the pin count, use the
multiplexing of the address and data bus. The 8-bit processor interfaced with the
IO, and memory using multiplexed bus is shown in Fig. 12.9. Care should be taken
by the prototype team to demultiplex the address and data bus while designing the
decoding and selection logic.

12.8 IO Multiplexing and Use in Prototype

IOs can be multiplexed using the asynchronous multiplexing or synchronous multi-
plexing technique.
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Fig. 12.9 Multiplexed
address data bus

1. Asynchronous multiplexing: The data transfer clock is not aligned in phase
with the design/system clock.

2. Synchronous multiplexing: The data transfer clock is in phase with the
design/system clock.

As discussed earlier, the SOCprototype iswell partitioned and having themultiple
FPGA designs. Still the limitation is due to available FPGA pins. Multiplexing can
be used to reduce the number of pins. It is basically grouping of the identical IO
signals to transfer the data serially between the FPGAs. It uses the MUX, DEMUX,
transfer clock. The launch FPGA can transfer the serial data using the transfer clock,
and the capture FPGA receives the serial signal at the input of DEMUX.

What we can do to have multiplexing is one of the important questions needs
to be answered! We can have the n:1 MUX logic to multiplex ‘n’ IO signals at the
launch FPGA. The launch FPGA should use the transfer clock to transfer the IO
signal information serially. The capture FPGA should have the 1:n DEMUX, and it
should receive the serial IO signal at the transfer clock rate.

The relationship between the transfer clock and design clock is given by

Transfer clock � n ∗ Design clock

This should be the minimum clock value with which IO signal needs to be outputted
from the launch FPGA.

For example, ifwehavedesignwhich is clocked at operating frequencyof 25MHz,
then theminimum clock to transfer the data should be n * 25MHz. If n�4 IO signals,
then the transfer clock frequency should be 100 MHz at least or it can be more than



228 12 SOC Prototyping guidelines

Fig. 12.10 IO multiplexing

100 MHz. The reason for using the faster clock to transfer the data serially is to have
the availability of the data on the next active clock edge at the capture FPGA.

The figure shows the IO multiplexing using MUX and DEMUX for ‘n’ IOs. The
real issue in such kind of the design is the speed of the data transfer due to IO delays
and the onboard delays.

Practically, we can use the RTL tweaks to add these elements at the FPGA bound-
ary or we can achieve the pin multiplexing after design partitioning. The EDA tool
certify [1] can be used to partition the design and for IO multiplexing. Certify tool
can add the CPM [1] and HSTDM to have the multiplexing of IOs. Where CPM is
certify pin multiplier [1] and HSTDM [1] is high-speed time division multiplexing
(Fig. 12.10).

12.9 Use of LVDS for High-Speed Serial Data Transfer

The better approach to have the pin multiplexing is by using the low-voltage differ-
ential signals (LVDS). In this strategy, the IO-SERDES can be used to pass the data
on the pin. The major advantage is that it is used to pass the high-speed data on serial
line (Fig. 12.11).

12.10 Use the LVDS to Send Clock on Parallel Line

The LVDS can be used to send the clock using the parallel lines. Figure 12.12 shows
one of the mechanisms to send the clock instead of generating the clock at capture
FPGA.
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Launch FPGA Capture FPGA

OSERDES ISERDES

LVDS LVDS

Fig. 12.11 LVDS and IO SERDES for serial transfer

Fig. 12.12 Transfer of clock using LVDS

12.11 Use the Incremental Flows

Use the incremental synthesis and place and route (P & R) flows during the SOC
prototype to have quick turnaround time. The time duration and efforts of many
weeks or days can be saved using the incremental flows enabled at the front-end and
back-end design.

12.12 Important Takeaways and Further Discussions

As discussed in this chapter, the SOC prototype can use single or multiple FPGAs
and following are few takeaways.

1. The design should be well partitioned across the FPGA boundaries.
2. Partition the design at register boundaries, i.e., registered inputs and registered

outputs.
3. Use the design and IO constraints while performing the timing analysis.
4. The onboard delays should be minimum in case of multiple FPGA designs to

have the better performance.
5. Use the clock gating conversions for the FPGA designs.
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6. In the multiple clock domain designs, replicate the synchronizers in the FPGA.
7. Use the clock network to have the minimum balanced skew across the board.
8. Use the compatible daughter cards for the analog blocks or IP communication

with the FPGA.
9. Avoid the combinational loops in the design as it results in the oscillatory

behavior.
10. Use the 60–70% FPGA resources and then try to find the FPGA count to realize

SOC.

The next chapter focuses on the design partitioning and SOC synthesis to have the
better prototype. The chapter is useful to the prototype and test engineers to have the
understanding of the design partitioning across multiple FPGAs and how to achieve
the better performance for the SOC prototype.
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Chapter 13
Design Integration and SOC Synthesis

For the multiple FPGA prototypes, find the number of FPGAs
using the initial gate estimation and by using the FPGA
architecture.

Abstract This chapter discusses about the SOC synthesis and the design partition-
ing. To have the better prototype of the SOC aswe know that we can have themultiple
FPGA architectures. Under such circumstances, the better design partitioning can
result into the high performance to have the proof of concept. The chapter key focus is
to address the important aspects while partitioning the design. How to overcome the
partitioning challenges and how to use the synthesis, place and route, and STA tools
with incremental approach to validate the complex SOC designs are also discussed
in this chapter!

Keywords Partitioning · Hardware and software partitioning
Multiple FPGA designs · Synthesis · Incremental synthesis ·Manual partitioning
Automatic partitioning · P and R · FPGA resources · IO pads · EDA tools
Back-end tool

As discussed earlier in previous few of the chapters, the SOC designs in this century
are more complex and need the million logic cells to validate the design. Under such
scenario, it is not possible to have the FPGA prototype for the SOC using single
FPGA. If the multiple FPGAs are used in the prototype, then the prototype and
design team need to work together to achieve the best possible performance for the
SOC design. The chapter discusses about the SOC architecture, design partitioning,
challenges in the design partitioning, synthesis, and how to overcome them!
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Fig. 13.1 SOC block diagram

13.1 SOC Architecture

Consider the SOC design used for the multimedia application. The design has the
multiple processors. These processors are used to perform the data transfer operations
and other algorithm executions. The audio processor is responsible to generate high-
quality audio output, and the video processor is used to get the high-resolution video.

Apart from the multiple processors, the SOC has the memory controllers to trans-
fer the data from the externalmemory and the bus interface logic. The other blocks are
network interfaces and general-purpose interfaces and used to interface the external
devices with the SOC (Fig. 13.1).

13.2 Design Partitioning

For the larger SOCs, the design needs to be partitioned into multiple blocks. This
can be achieved at the architecture level, at synthesis or netlist level. What we need
to think is the following:

1. Try to have the understanding of the architecture and micro-architecture, and in
the iterative way, try to partition the design to achieve the better performance.

2. Have the partition of the design by describing the hardware and software bound-
aries. For example, the initial setup and configuration can be controlled by the
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software; large data storage can be implemented using software. DSP, audio,
video, and processing blocks can be implemented using hardware.

3. Try to have the use of the automatic partitioning tools available in the industry.
4. Partition the design at the synthesis or netlist level for better performance.
5. Try to understand the target FPGA resources while partitioning the design to

yield the better performance.
6. Have a rough gate count estimation of each functional block in the form of the

FPGA resources.
7. Identify the external connectivity and the data transfer speed.
8. Have the larger density blocks in the separate module, and try to partition them

to have the better mapping.
9. Have the partitioning by considering the multiple clock domain and power

domain designs.
10. Partition the clock and reset network and use the clock and reset network to

have the least and uniform skew across the FPGA fabric.
11. Try to identify the external connectivity with the FPGA using high-speed IOs.

13.3 Challenges in the Design Partitioning

The design partitioning and the efficient coding play an important role in the SOC
design. Most of the time, engineers partition the design depending on the functional-
ity, but this type of partitioning without consideration of the resources required can
result into inefficient synthesis.

Proper design partitioning can improve the boundaries between the different func-
tional blocks and enhance the synthesis results. Even the proper partitioning can
improve the time during compilation and even can improve the synthesis optimiza-
tion and overheads on the constraints.

If the logical partitioning is correct, then it not only helps the RTL designer to
code the efficient RTL but also it helps to improve the area and top-level timing for
the design.

How we can partition the design for synthesis?

Large or complex designs can be partitioned into different modular blocks as it can
improve the team efficiency during the RTL design and verification phase.

Mainly, the logical partitioning by retaining the same functionality for the design
can promote the design reuse during the design cycle. For complex designs, the team
members can manage the block-level RTL design and synthesis provided that the
design is partitioned in the better way.

Thiswill be useful in the later stage of design cycle tomeet the timing requirements
for the design.

Following can be few of the techniques which can be used to partition the design
to achieve the better performance:
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1. Partition the design to promote the design reuse during HDL synthesis.
2. Always keep the required combinational logic in the same block. Do not partition

the design at the combinational boundaries.
3. Partition the design at the top level into separate IO pads, core logic, and boundary

scan.
4. Always isolate the state machines and state machine controllers from other logic.
5. Do not add the glue logic at the top level
6. Always isolate the synchronizers used for the clock domain crossing.
7. Before partitioning the design, consider the chip layout.

For the efficient synthesis, the designer can use the following guidelines:

1. Design should be technology independent
The designer should keep in mind that the HDL should be written in such a
way that it should be technology independent. It is possible only when the hard-
core instances of library gates are minimized. Try to understand the difference
between the instantiation and inference! The preference during the HDL design
should be given to inference instead of the instantiation.
Themajor advantageof the inferenceof the logic is the design canbe implemented
for anyASIC library andnew technology through the resynthesis. If synthesizable
IP cores are used in thedesign, then the technology independentHDLcan improve
the synthesis result. Manage the instantiated logic depending on the use of library
into separate module, so that it will be lesser time consuming while migrating to
other technology library.

2. How I can partition the clock-related logic in the design?
Use the separate module for the clock gating logic and reset logic and should
be set as don’t touch. This will help in the clean timing related with the clock
module group.
In single module, avoid the use of the multiple clocks as this will help while
writing the block-level constraints with reference to the clock.
In the multiple clock domain designs, it is not possible to keep the multiple clock
logic in different blocks. In such scenario, perform the stand-alone synthesis
of the synchronizers and use the don’t_touch attribute while instantiating the
synchronizers in the main block.
In the hierarchical designs, use the same name for the clock throughout hierarchy
as it helps during script writing and during the synthesis.

3. Partitioning Challenges in the single and multiple FPGA designs?
Whether it is single FPGA design or multiple FPGA designs, the design parti-
tioning has many challenges; few of them are listed in this section

1. Design synchronization.
2. Identifying the large density blocks.
3. Identifying the highly interdependent functional blocks.
4. Grouping the interdependent blocks.
5. Identifying the hardware and software functional blocks and their synchro-

nization.
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6. Interconnectivity between the multiple FPGAs.
7. Partitioning of the design with the goal to minimize the interconnect issues.
8. Signal integrity issues for the multiple FPGAs.
9. IO voltage domains and connectivity.
10. FPGA available resources and limitation on pin count.
11. Clock network delay and uniform distribution of the clock.

4. What exactly we are trying to achieve with better partitioning?

1. Better design mapping on multiple FPGAs.
2. Better IO constraints at FPGA level and at board level. Use of the constraints

directly by the placement and routing tool.
3. Logic replication or duplication for the multiple FPGA designs and efficient

use of IO multiplexing.
4. Better use of the combination of synthesis, partitioning, and placement and

routing tools to get the desired performance.
5. Useful to identify the correct topology in which the multiple FPGAs should

be connected.

13.4 How to Overcome the Partitioning Challenges

The different techniques at the architecture level and at the netlist level can be used to
partition the design for the better prototype. The better partitioning can be achieved
by using the partitioning tool. This section discusses about few of partitioning tech-
niques.

13.4.1 Architecture Level

Have the better understanding of the architecture of the SOC functional specifications
and the key resources. The closer look at the architecture and micro-architecture can
give the fair understanding of the partitioning of the design at the hardware and
software levels.

For example, if we are designing the SOC which consists of the general-purpose
processor and DSP processor with audio, video, and other associated logic, then the
following way I will think?

1. What are the features of the processor, and what is rough estimation of the
resources required?

2. What are the functional specifications of the DSP processor with the audio and
video decoders and the resource requirement?

3. Other associated logic such as memory controller, serial–parallel bus logic and
internal memory capacity and specifications.
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Fig. 13.2 Design partitioning to get the FPGA compatible RTL

So while partitioning the design, the group I can be processor, memory controller,
buses, and internal storage and another group can be DSP processor, audio, and video
decoders. This can be a better way while prototyping the SOC using the multiple
FPGAs. Again the group I and group II functionality need to be partitioned into the
smaller blocks to have modular design.

If we try to speak in the context of prototyping the SOC RTL, then the design can
be partitioned by identifying:

1. Design blocks which should be validated using the FPGAs (For the FPGA vali-
dation)

2. Design blocks interfaced to the FPGA (outside FPGA).

The design partitioning to get the FPGA RTL is shown in Fig. 13.2.
The FPGA compatible RTL can be partitioned using the top-down approach to

get the RTL required for the multiple FPGAs (Fig. 13.3).
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Fig. 13.3 Top-down partitioning for the multiple FPGAs

13.4.2 Synthesis or Netlist Level

If the design is not partitioned at the architecture level, then the design can be par-
titioned at the synthesis level. But this is not the better approach for the complex
design.

For the moderate gate count design, this may work after performing the synthesis.
During the initial synthesis, we can understand about the area and resource require-
ment to realize the design. To have the better prototyping, using the least area or less
FPGA resources is one of the important challenge. Under such circumstances, the
design can be partitioned by examining the area reports, block functional depend-
ability, connectivity between the different blocks and clock, and voltage domain
analysis.

Better way in this type of approach is to use the area report generated during
the synthesis and find out the blockwise report using the partitioning tool. Main
important task needs to be accomplished by partitioning tool is to find the IOs for
each block and their connectivity to other blocks.

The tool like Synopsys Certify [1] can give information about the resources and
IO count.What tool does is that; it overestimates the resource requirements, but gives
correct IO count [1]. Most of the time, overestimation of the resource requirement
is better to choose the multiple FPGAs as during the later stage it is at least sure that
design will be realized (Fig. 13.4).

13.5 Need of the EDA Tools for the Design Partitioning

As discussed earlier, the design complexity of the SOC is very high and to have
the cost-effective prototype, the option can be used to have plug and play interface
boards with the FPGA. This can give the quick and efficient prototype solution, if
the timing at the interface level is matched. But the serious trouble in the complex
design can be observed, if the design does not fit into the single FPGA. Under such
circumstances, it is essential to partition the design into multiple FPGAs.
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Fig. 13.4 Partition at the netlist level

The serious partitioning problems may be due to logic density, speed, multiple
clocks in the design and timing/synchronization issues. There are different ways into
the design can be partitioned into multiple FPGAs may be at the architecture level
or at the netlist level. The better visibility we can get if the design is partitioned at
the netlist level because we have the information about the area estimation for the
design from area reports.

In the present scenario, if we consider the multi-million gate SOC, then the half
or one-third of the design can be fitted on the larger FPGA. The major consideration
while designing prototyping platform is the FPGA equivalence of the logic. The
FPGA may not have the sufficient BRAMs and DSP blocks to accommodate the
logic. Under such circumstances, it is essential to find the number of FPGAs required
for prototyping. The pin count of ASIC is always more than FPGA, so the biggest
bottleneck is the pin availability and timing.Another important point to be considered
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is tweaking of theASICRTL into FPGA equivalent. For example, gated clocks, clock
enable and ASIC memories need modifications.

The partitioning can be manual or automatic, and the following are few highlights
and considerations:

13.5.1 Manual Partitioning

Most of the time, we try to partition the design manually. Consider the older design
and its environment and allow fewer changes to upgrade the design. Under such
circumstances, as the older design is proven, the manual partitioning can be cost
effective. As there is no additional investments in the partitioning tools, the overall
time and budget of such platform is lesser as compared to the automatic partitioning.
Following are the important points need to be considered while partitioning design
manually:

1. Have the understanding of the design architecture and micro-architecture. Keep
the timing critical designs close to each other.

2. Have the floorplan to understand the data, control paths, and other interface
boundaries for the design.

3. Understand the FPGA resources in much more details and then partition the
design into multiple FPGAs. If the resources of FPGA are limited and design
is partitioned into multiple FPGAs, the prototype cannot yield into the desired
performance.

4. If the enough number of IOs are not available, then use multiplexing and take
care that the additional logic should not be placed at the output of MUX.

5. Use the available registers in the IO block to have the sequential boundaries.
6. Use the gated clock conversions and ASICmemory conversions at the RTL level.

The manual partitioning approach is suitable for the moderate gate count designs
up to 100 K gate logic. But if the design has millions of the gate and the multiple
clock/power domains then manual partitioning is never the cost-effective solution.
The manual floorplanning for the multi-million design is not the good solution as it
is always error prone. It is not possible to keep the record of the RTL tweaks and
conversions for the manual partitioning (Fig. 13.5).

13.5.2 Automatic Partitioning

Most of the EDA tool vendors like Synopsys offers the automatic partitioning tools
and the following should be few of the features used for the automatic partitioning
of the design:

1. Partitioning tool should support TCL commands. If it supports SynopsysDesign
Compiler (SDC) commands then the ASIC scripts/constraints can be used.
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Fig. 13.5 Design partitioning

2. It should be able to define the probe points for the verification of the design. It
should allow the integration with the debug tools like Xilinx ChipScope Pro,
Intel-FPGA signal Tap and Synopsys Identify [1]!

3. Partitioning tool should support the FPGA prototyping board and the environ-
ment.

4. The tool should be able to optimize for the area requirements.
5. The tool should be able to understand the pin requirements and optimize for the

number of pins.
6. It should be able to accommodate the small design changes at the netlist level.
7. It should be able to accommodate the large number of design changes at the

RTL level.
8. It should give the resource estimation quickly for the target FPGA to ensure

that design can fit on the FPGA.
9. It should identify the high-speed IO and clock lines and utilize them to improve

the timing
10. Should allow the allocation of the logic to every FPGA. Maximum limit for the

better prototyping can be 60–70% of the available FPGA resources.
11. It should give the signal to trace assignment report for the detailed analysis of

the prototyping.

Still there are limitations to identify the black box IP and BRAM and DSP infer-
ence. So most of the time we observe combined use of the manual and automatic
partitioning.
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13.6 Synthesis for the Better Prototype Outcome

AS SOC designs are faster than the FPGA and logic density is larger the design
partitioning for the million gate SOC is the most important task. The design can be
partitioned before synthesis or after synthesis. The prototype team needs to choose
the correct approach for partitioning the design.

The truth is; design may not run at the SOC speed and it is essential to modify
the SOC design into FPGA equivalent resources. So during the synthesis it is essen-
tial to have clarity about the architecture or initial floorplan, constraints and FPGA
resources. Prototyping flow should achieve the better performance as compared to
SOC emulation and for that themajor milestone is synthesis. There aremultiple ways
in which the synthesis can be performed to achieve the better results. The following
are few of the approaches used during the synthesis.

13.6.1 Fast Synthesis for Initial Resource Estimation

If we chose the fast synthesis then it can be useful for understanding the initial or
rough device utilization and the performance at the initial stage. But in such type
of synthesis the full optimization is ignored by the synthesis tool. The reason being
the runtime is almost around two or three times. But this can be useful to save the
weeks/days time for the complex designs and for the initial design partitioning.

13.6.2 Incremental Synthesis

The incremental synthesis is the better approach for the complex SOC designs. The
incremental efforts of P andR tool canbeused efficientlywhile synthesizing the larger
density designs. The SOC design sub-blocks or trees can be synthesized separately
according to the version changes.

For example, consider the SOC design having 100 sub-blocks and the RTL
changes are incorporated in only 10 sub-blocks; then during increment synthesis
the tool can synthesize the RTL for the 10 sub-blocks. This reduces overall efforts
and time during the synthesis phase.

That is if the sub-block or tree architecture is not changed then synthesis tool
ignores this and preserves the previous version. This reduces the weeks/days time
for the complex SOC synthesis.

The beauty of the EDA tool like Synopsys Certify [1] or the XILINX P and R tool
[2] is that they preserve the hierarchy, previous version logic, placement, constraints,
and mapping as it is during the resynthesis, if the RTL is not modified. It reduces the
turnaround time.
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Fig. 13.6 Design synthesis
and implementation
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If small portion of the design is modified, then due to incremental synthesis, the
design runtime reduces, and P and R tool can use the synthesis results.

The prototype team should be able to use the features of the synthesis and P and
R tool. The combined use of these features can reduce the significant amount of time
during prototyping. Most important point is that the P and R runtime is always larger
than the synthesis runtime for the complex designs. So the strategy should be use
the synthesis and P and R tool in the incremental flow (Fig. 13.6).

The Xilinx EDA tool back-end flow is shown in Fig. 13.7

13.7 Constraints and Synthesis for FPGA Designs

The section discusses about the use of Synopsys DC tool for the FPGA synthesis.
The FPGA synthesis commands are listed in Table 13.1.

The following steps can be followed for the FPGA synthesis using Synopsys DC

1. Read the Verilog/VHDL design file
2. Set the design constraints
3. Insert the pads
4. Perform the design synthesis
5. Execute the replace_fpga command
6. Write the database
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Fig. 13.7 Xilinx Back-end tool flow [2]

Table 13.1 Commands used during FPGA synthesis

Command Description

set_port_is_pad <port_list>
<design_list>

The command is useful to place attributes on the list of ports
specified in command. Attribute allows dc to map IO pads

set_pad_type <type of pad>
<port_list>

The command is used to choose the type of the pads to which
design is to be mapped

insert_pad The command is used to insert the pads

replace_fpga The command is used to convert the synthesizable FPGA
database to the schematic, instead of visualizing the schematic
having CLBs, IOBs the schematic consists of gate

The sample script for the FPGA synthesis of top_processor_core is shown below:

dc_shell > read –format verilog top_processor_core.v
dc_shell> create_clock clock –name clk –period 10
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dc_shell> set_input_delay 2 –max – < list all the input ports using the same
command and required delay attribute>
dc_shell > set_port_is_pad
dc_shell> insert_pad
dc_shell> compile –map_effort high
dc_shell> report_timing
dc_shell> report_area
dc_shell> report_cell

The timing report consists of the timing path information and the data required
time, data arrival time, and slack.

Area report gives the list of following:

Number of ports
Number of cells
Number of nets
Number of references
Combinational area
Non-combinational area
Net Interconnect area
Total cell area
Total area

To get the information about the FPGA resources, the following command can be
used:

dc_shell> report_fpga –one_level

It gives the following information about the use of FPGA resources:

Function Generators:
Number of CLB
Number of ports
Number of clock pads
Number of IOB
Number of flip flops
Number of tri state buffers
Total number of cells
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To write the netlist in the database format, use the command

dc_shell> write-format db –hierarchy –output top_procesor_core.db

The synthesizable database (netlist) and timing information can be used by the
place and route tool.

13.8 Important Takeaways and Further Discussion

The following are few important points to conclude this chapter:

1. Use themix of themanual or automatic partitioning for the complexSOCdesigns.
2. Use the incremental flows during the synthesis for the quick turnaround.
3. Use the EDA tools to partition the design.
4. Use of the partitioning tool allows the better design mapping on the FPGAs and

IO timing.
5. Use the EDA tool directives to get the better performance during the synthesis.
6. Use the IO and speed constraints during the synthesis and propagate them to the

back-end tool.

The next chapter discusses about the interconnect delays and timing.
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Chapter 14
Interconnect Delays and Timing

To minimize the pin count, use the IO multiplexing.

Abstract This chapter discusses the high-speed interconnects and their need in the
design. If we consider about the complex SOC architecture, then the prototype using
single FPGA is not always the feasible solution. The prototype needs to have the
multiple FPGAs and the connectivity between them can be visualized using the
bus topology. The high-speed interconnects between them can reduce the onboard
delays and in turn improves the design performance. This chapter focuses on all these
aspects, issue, challenges, and solutions to have the high-speedFPGAprototype using
multipleFPGAs.The IOmultiplexing, timebudgeting, and interconnectivity between
the FPGA are described using the practical considerations and design scenarios.

Keywords Interconnect · Interface · High speed · Onboard delay · Cable
Switch matrix · IO bandwidth · Hyper-register · HyperFlex · Pin multiplexing
IO multiplexing · SERDES · LVDS · Deferred interconnect · Star connection
Ring connections

The interconnects between the multiple FPGAs decide the overall speed of the pro-
totype. Most of the times during the board bring-up stage we observe the issues in the
performance of the prototype. For complex SOCs, it is the truth that, onboard delays
between the multiple FPGAs and other interfaces limit the overall performance of
the design. The chapter discusses all these aspects in more details.
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14.1 Interfaces and Interconnects

The interface between the multiple blocks plays important role in the prototype. The
interconnect delays between the processor, IOs; memories need to be reduced as they
decide about the performance of the prototype.

Let us consider Fig. 14.1 in which the output buffer inside the FPGA 1 drives
the input buffer using direct interconnect between the FPGAs. The interconnect has
the impedance and the wire interconnect model can be visualized as RC circuit. The
speed of the data transfer is limited due to the interconnect properties and the RC
effect where R is resistance of the wire, and C is the stray capacitance.

Due to the charging and discharging of the stray capacitance, the speed of the
data transfer is limited. At higher frequencies, the interconnect between two blocks
or devices acts as transmission line. The termination impedance of every intercon-
nect plays important role, and most of the time we need to match the termination
impedance. The issues like crosstalk signal integrity degrade the overall design per-
formance at the system level. The care should be taken by the system and board
designer to have the least interconnect delays.

The external chipset interfaces and timing are crucial, and it is another bottleneck
in the SOC design.

Consider Fig. 14.2 in which the two identical copies of the processor and associ-
ated logic are mapped on the FPGAs. Due to the gate count and resource availability
limitation of the single FPGA, the multiple FPGAs are used and the connectivity
is established between them. The registers at the IO are used to hold the data. The
launch FPGA stores data in the output register, and the capture FPGA uses input
register to hold the data.

The direct interface has the limitations in the data transfer due to the FPGA IO
pin count and due to the design complexity. As SOC pin count is larger as compared
to FPGA pin count, the pin multiplexing need to be incorporated to minimize the pin
count.

Fig. 14.1 RC delays
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Fig. 14.2 Identical FPGA blocks and connectivity

14.2 Interface for High-Speed Data Transfers

To transfer the data between multiple FPGAs, the better way is to queue the data
in the buffer having the required depth. As shown in Fig. 14.3, the FIFO is used to
transfer the data between the two FPGAs. The launch FPGA can output the data;
write signal is generated when FIFO is not full. The capture FPGA reads the data by
generating the read request when FIFO is not empty.

This type of mechanism can add significant amount of delay due to the latency at
the read and write side. Even adding the FIFO or circular buffers outside FPGA is
not better solution, as it reduces the speed of the data transfer.

For improved performance, the FIFO logic can be implemented inside the FPGA,
andusing the direct interconnections, the data can be transferred between twoFPGAs.

Fig. 14.3 Interface between two processors using FIFO
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Fig. 14.4 Multiple FPGAs on the board

14.3 Interfaces for Multi-FPGA Communication

As discussed earlier, the SOC gate count during this century is almost around 20
million gates and the single FPGA solution is not the better option. Under such
circumstance, the prototype should be flexible enough and should have the adequate
IO interfaces. As we know that components placed on the single board have less
number of challenges during the testing. At the SOC architecture level, the decision
should bemade about the prototype features requirement. Always it is better choice to
consider about the IO speed, IO voltage, bandwidth, clock and reset network, external
interfaces, while designing the prototype using the single or multiple FPGAs!

Under such circumstances for the better prototyping, let us understand the connec-
tivity between the multiple FPGAs. Inter-FPGA connectivity is one of the important
factor and decides about the performance and quality of the prototype. Consider
the Virtex-7 (XC7V2000T) FPGA having the user IO of 1200 and differential IO
of 1152 for FLG1925, for the prototype using the multiple FPGAs the connections
between the multiple FPGAs or associated peripherals is the key to achieve the
desired performance. Multiple FPGA on board is shown in the Fig. 14.4.

Whether to use the ring-type arrangement or star topology to establish connectivity
between the multiple FPGAs is the important question need to be addressed! Few
prototype engineers may feel that the better option is mixed interconnects using the
ring-type connections and star.

14.3.1 Ring-Type Connectivity Between FPGAs

In such type of arrangement, the multiple FPGAs are connected to form the ring.
In such type of connectivity, it increases the overall path delay. As the signal is

passing through the FPGA, the equivalent prototype logic can resemble to priority
logic. This type of the connectivity has slower speed as compared to other type of
boards.
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If we try to visualize the ring-type connections, then at high level we can think
about the pin connection using such type of inter-FPGA connectivity. The wastage
of IOs cannot be limited in such kind of the connectivity. For the FPGAs which are at
the downside; IOs will be wasted, and it is additional overhead to the board designer
and board layout team to connect these IOs to high-impedance states.

14.3.2 Star Connectivity

This type of inter-FPGA connectivity is faster as compared to the ring arrangement
due to the direct connections with the other FPGA. For the better prototype per-
formance, use the high-speed interconnects between the FPGAs and configures the
unused pins as high-impendence state.

14.3.3 Mixed Connectivity

During the board design and layout, we may use the mix of the ring type connections
and star connectivity. Such type of connectivity can have the moderate performance.
The boards available in the market from vendors have fixed connectivity andmay not
be suitable during prototyping as they do not match the specifications and require-
ments. Under such circumstances depending on the design complexity, it is better to
choose interface connectivity for better prototype performance.

14.4 Deferred Interconnects

It is very much advisable to use the deferred interconnect using the cables in the
multiple FPGA platforms. As connections are not fixed, it gives flexibility to the
prototype team to use the cables with the required connections. Figure 14.5 shows
multiple FPGA connectivities using the cables.

As shown in Fig. 14.5, the switched routing matrix is used to establish the con-
nectivity between the different FPGA boards. The board layout and design engineer
need to provide this type of connectivity for the multi-FPGA design. The number of
layers for the complex SOC boards can be of minimum 40–50, and these connections
can give the freedom to the prototype team due to programmable features.

This type of connectivity uses the programmable switches with the switch matrix
for establishing the connections between the FPGAs. So instead of having the static
connections, the board connections can be programmed and configured. Such type
of connectivity can be treated as dynamic connectivity with reuse.
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Fig. 14.5 Deferred connection between the FPGA

Fig. 14.6 Multiple FPGAs connectivity using switch matrix

One of the major advantages of this type of connectivity is to add the debug and
test circuitry as and when required on the field or off the field due to plug and play
programmable arrangement.

The care should be taken to fix the pin placements and during design partitioning
to program the switches, and for that purpose, the partitioning EDA tools can be used.

The speed is the important aspect for any kind of prototype, and as discussed
the speed of prototype is dependent on the interconnect impedances and stray
capacitances. The interconnect delays are function of the wire length and may be
prone to crosstalk due to the differed impedances. During the timing estimations, it is
required to consider the delays between the FPGAs (onboard delays) and logic delays
(on-chip delays). In the simple terminology, we can treat the delays as off-FPGA and
on-FPGA delays. To improve the performance of the prototype, it is recommended
to use the high-speed differential signals between the FPGAs (Fig. 14.6).
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Fig. 14.7 Multiple FPGAs design timing

14.5 Onboard Delay Timing

Let us consider the direct interconnect between two FPGAs. We need to consider
about delays to find out the overall data transfer between the two FPGAs.

As discussedwe can have the direct connection between the FPGAs and following
are the main important delay parameters which can be used to find the speed of the
design.

tpffl Clock to q delay of the launch flip-flop.
toutbuf The output buffer delay at launch FPGA pad.
tinbuf The input buffer delay at capture FPGA pad.
tsu Setup time of the flip-flop.
ton_board Onboard delay of the interconnects between the FPGA.

So for the desired timing performance, it is essential to meet the setup time at the
capture edge. So the max delay time to reach data at the data input of the FPGA#2
(Fig. 14.7) should be

tmax � tpffl + toutbuf + ton_board + tinbuf

Thus, the maximum frequency can be computed by using

Fig. 14.8 Multiple FPGA communication using cable connectors
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Fig. 14.9 Multiple FPGA communication using switch matrix

fmax � (1/tmax) � (1/(tpffl + toutbuf + ton_board + tinbuf))

If cable connections are used between the multiple FPGAs, then while calculating
the maximum operating frequency consider the maximum onboard delay as function
of the cable length. Themax cable delay between the FPGA can be treated as onboard
delay (Fig. 14.8).

fmax � (1/tmax) � (1/(tpffl + toutbuf + tcable + tinbuf))

If the programmable switches are used to establish the connectivity between the
FPGAs, then use the delay of the switch matrix (Fig. 14.9).

The maximum operating frequency can be computed using the following formula

fmax � (1/tmax) � (1/(tpffl + toutbuf + tswitch_matrix + tinbuf))

In such type of connectivity, the onboard delay is denoted by tswitch_matrix.
To conclude this; prototype engineer needs to take care of the following important

points during SOC prototyping!

1. RTL coding style and the design mapping on the single or multiple FPGAs
2. Complexity of buses and interconnects
3. IP block use and their timing
4. Overall % utilization for each FPGA device
5. IO speed and bandwidth to have the data transfer between the FPGAs.

14.6 What Care We Should Take While Designing
the Interface Logic?

In the system design, the processors can be interfaced with the external IO and mem-
ory devices. As stated earlier to reduce the pin count, the IOs need to be multiplexed.
There are few multiplexing techniques such as
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Fig. 14.10 IO multiplexing
of address data bus

1. IO multiplexing using MUX and DEMUX
2. IO multiplexing using SERDES
3. Shifter-based IO multiplexing.

The IO multiplexing depending on the design requirements can be incorporated
using the RTL or using the EDA tools. The better partitioning and pin mapping tool
need to be used for the pin multiplexing.

As shown in Fig. 14.10, the address and data bus are multiplexed. To have the
correct address decoding, the bus should be demultiplexed at the destination logic.
The IO multiplexing techniques are discussed in Sect. 14.8.

14.7 IO Planning and Constraints

For the efficient prototype, the IO planning, documentation, and constraining them
are the important tasks. IO planning using Xilinx Vivado is described below.

Use the IO planning layout shown in Fig. 14.11.
To perform the IO planning, use the following auxiliary view after clicking on IO

planning (Fig. 14.12).
In the auxiliary view, the package is displayed, and after selection of the device

constraints, the IOports are displayed in the console area.Withmultiple IO standards,
the design inputs and outputs are listed in the IO tab area.

In the IO tab area, click on the (+) box for inputs (d_in) and output (y_out)
(Fig. 14.13).
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Fig. 14.11 IO planning layout [2]

Fig. 14.12 IO planning auxiliary view [2]

Now you can see the IO standards. For the d_in (6 down to 0) and y_out (6 down
to 0), the IO standard LVCMOS33 is used, and for the d_in (7) and y_out (7), the
default IO standard LVCMOS18 is used. Depending on the IO requirements, one of
the IO standards can be chosen. Now to change the IO standard for the y_out (7) to
LVCMOS33, use (Fig. 14.14).
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Fig. 14.13 IO standards [2]

Fig. 14.14 Selection for IO standard [2]

By using the tcl commands, also IO standards can be assigned. Use the following
commands

set_property package_pin V5 [get_ports {y_out[7]}]
set_property iostandard LVCMOS33 [get_ports [list {y_out[7]}]]

Even by using the IO port properties, the IO standards can be assigned. After
assignment of IO standards, save the constraints in the comb_design.xdc file.

But for the larger SOC design, the manual IO planning is not the correct options.
The manual error can occur while selecting the IO standards, voltage domains and
while assigning the constraints. So use the scripting to lock the IO locations for the
respective IO standards and to constraint the IO delays.
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Fig. 14.15 MUX-based IO multiplexing

14.8 IO Multiplexing

To minimize the pin count, the IO pins can be multiplexed. The section discusses the
different IO multiplexing techniques used in the SOC prototype.

As discussed earlier, the IO multiplexing can be achieved by using the

1. MUX-based IO multiplexing
2. SERDES-based IO multiplexing
3. IO multiplexing using the shifter

14.8.1 MUX-Based IO Multiplexing

In this type of technique, the multiplexer and demultiplexers are used. Consider
the n:1 MUX receiving the IO signals inside FPGA #1. The FPGA #1 operates
on ‘Transfer Clock’. The n IOs are multiplexed and transferred by using ‘Transfer
Clock’. The FPGA #2 uses ‘Receive Clock’ to receive the sample the IO signals, and
they are demultiplexed using 1:n demultiplexer (Fig. 14.15).

If n�4, then the 4:1 IO multiplexer need to transfer the IO signal at the clock rate
of the n*4. So if we consider the FPGA#1 system clock is ‘clk’, then the transfer
clock should be n*clk. The transfer and receive clock in such type of technique
should be same.

14.8.2 IO Multiplexing Using SERDES

This is one of the techniques to multiplex IOs, and in this technique, the SERDES
and LVDS are used to transfer the IO signal from the launch FPGA to capture FPGA.

The launch FPGA can transfer the differential signal using the transfer clock, and
this signal is received by capture FPGA (Fig. 14.16).
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Launch FPGA Capture FPGA

OSERDES ISERDES

LVDS LVDS

Fig. 14.16 LVDS and IO SERDES for serial transfer

14.9 IO Pad Synthesis for FPGA

AS FPGA tools does not understand about the instantiation of the pads; hence, it
is essential to modify them during the prototype. As it does not handle the IO pad
in the RTL and infers the FPGA pad. So need to leave the pads out with dangling
connections inactive or to the top-level boundary. For the prototype, replace each IO
pad instance with synthesizable model of FPGA equivalent.

The model should have the logical connections at the RTL level and that can
be done by writing small piece of code using the Verilog RTL. For the efficient
prototype, prepare the SOC pad library. The basic IO cell for the FPGA is shown in
Fig. 14.17.

Use the following commands using Synopsys DC. For more information refer to
Chap. 13 for the FPGA synthesis.

dc_shell> set_port_is_pad
dc_shell> insert_pad
dc_shell>compile –map_effort high

PADOutput 
Register 

Tri State 
Control 
Register 

Input 
Register 

Fig. 14.17 FPGA basic IO cell
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Table 14.1 Intel FPGA Stratix 10 interconnect [1]

Intel Stratix 10
GX/SX device name

Interconnects PLLs Hard IP

Maximum
GPIOs

Maximum
XCVR

fPLLs I/O PLLs PCIe hard IP
blocks

GX 400/SX 400 392 24 8 8 1

GX 650/SX 650 400 48 16 8 2

GX 850/SX 850 736 48 16 15 2

GX 1100/SX 1100 736 48 16 15 2

GX 1650/SX 1650 704 96 32 14 4

GX 2100/SX 2100 704 96 32 14 4

GX 2500/SX 2500 1160 96 32 24 4

GX 2800/SX 2800 1160 96 32 24 4

GX 4500/SX 4500 1640 24 8 34 1

GX 5500/SX 5500 1640 24 8 34 1

14.10 Modern FPGAs IOs and Interfaces

The modern FPGA Intel Stratix 10 has the high-speed IOs. Table 14.1 gives infor-
mation about the general purpose and high-speed interconnects, PLL I/Os and the
PCI express hard blocks. Depending on the IO and logic density requirements, the
prototype boards can be chosen or designed.

14.11 How This Discussion Is Helpful During SOC
Prototyping?

During the SOC prototyping, we need to think about the following points to choose
the FPGAs having high-speed IO connectivity and architecture.

1. High-speed IO connection
2. High-speed differential signals
3. Low-voltage differential signals
4. High-speed Interfaces
5. At the implementation level better routing

Consider the Stratix 10 HyperFlex routing multiplexer shown in Fig. 14.18.
Intel FPGA Stratix 10 devices have HyperFlex core architecture, and it delivers

the 70% lower power compared to the previous generation. The performance is 2X
of the clock frequency. The advantage is to have the higher throughput, improved
power efficiency, and greater design functionality with improved productivity.

The important reasons are, due to HyperFlex core architecture, the IP size is
reduced, and due to 2X clock frequency, the buswidth reduces. This feature improves
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Fig. 14.18 Stratix bypass hyper-registers [1]

Fig. 14.19 Hyper-register throughout FPGA fabric [1]

the routing congestion as a lot of the FPGA resources can be free. Even this improves
the overall timing for the design.

Additional by-passable registers throughout the FPGA fabric are available in
addition to the traditional registers in the ALM. These hyper-registers are available
at the input of the functional block, interconnect, and routing segments.

These registers can be used by hyper-aware tools to improve the design timing
performance by reducing the critical path delay and routing delay. Figure 14.19
shows the hyper-registers throughout the FPGA fabric.
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14.12 Important Takeaways and Further Discussions

As discussed in this chapter, the following are few important points to conclude this
chapter

1. The interconnect delays are limiting factor to achieve the performance of the
prototype.

2. For the prototype using multiple FPGAs use star, ring or mixed topology.
3. The IO multiplexing is used to reduce the pin count of the design.
4. The IO multiplexing can be implemented by using MUX, shifter, and SERDES.
5. The onboard delays between FPGA need to be minimized to have the better

performance of the prototype.
6. The LVDS and SERDES can be used to send IO and clock information from

launch FPGA to capture FPGA.
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Chapter 15
SOC Prototyping and Debug Techniques

Quantum computing is the better choice for the future digital
world.

Abstract The chapter discusses the key considerations while choosing the target
FPGA and prototyping board to validate the SOC designs. The chapter even covers
themultiple FPGAdesigns and considerations, risk, challenges and how to overcome
them. The chapter also covers the Xilinx Zynq-7000 device features and the SOC
platform considerations.

Keywords FPGA · LUT · CLB · MUX · Device utilization · ROM · RAM
Block RAM · Multiplier · Xilinx FPGA · Intel FPGA · SOC · DSP · Zynq 7000
Z-7020 · PS · PL · CMT · DDR2/DDR3 · PLL · Ethernet · SPI · I2C · UART
CAN

As discussed in the previous few chapters the million gate SOC designs can be
prototyped using the FPGA. The real challenge to achieve the desired performance
in suchkindof the design is due to themultipleFPGAarchitecture, designpartitioning
and the connectivity between them. The chapter discusses about the risk, challenges
and how to choose the target FPGA to have the better SOC prototype.

15.1 SOC Design and Considerations

In the past few years while working in the field of the FPGA designs, I have observed
most of the time that the complex design does not fit on the single FPGA. The
important aspect with the designer we thought that let us tweak the architecture to
find out is there any room for the resources to fit inside the single FPGA?
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It was logical thought as well as the thought to avoid the use of multiple FPGAs.
The outcome of such kind of discussion was positive, and with the architecture
tweaking and using the synthesis tool directives to use the FPGA resources efficiently
we were successful to map the design in single FPGA.

While prototyping for the complex SOCs what should be our approach? In the
practical environments, every organization has their standard flowswhile prototyping
the SOCs. The team manager and leader can think about when to start about the
prototyping? At which stage? After achieving the desired coverage goals at the block
level? Or wait to complete the full functional verification.

All these questions can be answered if we look into the prototype flow!We cannot
have the real estimation of the FPGA resources at the start and even it is difficult to
differentiate between the logic which can be mapped inside the FPGA and outside
the FPGA. As a team, we need to focus on the functional correctness of the design
at the start. So team leader should think about the start of prototyping phase after
passing all the basic tests at the sanity level. At least, the team members will be sure
about the data passing from one functional block to another functional block, and
even they will be sure about the basic functional correctness of the design.

If we try to use the waterfall model that is first phase RTL design and second phase
RTL verification using the system Verilog and then the final phase as prototype and
testing, then this may delay the project by few weeks or months. Instead of using the
waterfall model it is better approach to concurrent kick-off RTL design, verification
and board bring up phase. The concurrent task execution can achieve the desired
milestones in the better way.

What are the important tweaks during the prototype using FPGA?
The important point to consider is that what about the IO pad rings? What about the
large external memories? What about the analog blocks? Effectively, we will not be
able to map the large external memories, analog blocks, and IO pad rings inside the
FPGA!

At the architecture level, it should be decided, which functionality should be tested
using the FPGA, and what kind of prototyping board is required to test or emulate
the overall SOC.

So, let me put this in the real scenario of prototyping the SOCs using the analog
blocks and hard IP cores. Practically, it is not possible to have the FPGA netlist
for analog blocks as well as hard IP blocks. In the absolute reality, the IP design
houses provide the evaluation boards and the prototype team needs to create the
SOC prototype platform with single or multiple FPGAs interfaced with such type
of the evaluation board to achieve the desired performance and functionality. Let us
discuss the important aspects of such type of designs.

1. Interface signals: The FPGA and the evaluation board should have compatible
interfaces. If IOs are not compatible, then there will be an issue of the signal
integrity.

2. Connectivity between FPGA and evaluation board: RTL should provide the
connectivity between the design functionality realized on the FPGA board and
external evaluation board.
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3. Timing: It is one of the important aspects due to the interface delays between the
FPGA and the external IP board. So need to have clock resource analysis with
the inter delay timing.

4. Synchronization: For booting, the external hardware may take less time as com-
pared to FPGA logic, so during the prototype care should be taken that the FPGA
bitstream should be loaded first inside the FPGA. Again, the synchronous and
asynchronous reset/reset removal pulse durations need to be analyzed.

5. Power supply: Should have the digital and analog ground isolation and multiple
voltage levels depending on the requirements. Even care should be taken that the
FPGA and external board connectivity should maintain the desired voltage and
logic levels.

6. Mechanical assembly: The care should be taken to have the good mechanical
assembly so that during the different geographical locations/during transit the
board should not damage.

15.2 Choosing the Target FPGA

As discussed in Chap. 11, the key FPGA resources are CLBs (to map the combina-
tional, sequential logic), memories, interconnect resources, clocking resources, DSP
blocks, IO blocks, and transceivers. Now depending on the need, the FPGA can be
chosen for the prototype. What we need to think about the available resources as
mentioned above.

Combinational and sequential logic: How many CLBs the FPGA has? This can
answer the logic density of the FPGA. As the logic (combinational and sequential) is
packed inside the CLBs (LUTs+FFs+additional cascade/carry logic), consider the
CLB count. For example, considering Virtex7 XC7V200T device it has 19,51,560
logic cells and the logic can be mapped using these logic cells depending on the SOC
architecture.

Memories: As discussed, focus on the number of BRAMs available and their
configuration while selecting FPGA. Each FPGA has multiple BRAMs and con-
figured as RAM, ROM, FIFO. If we consider the Virtex7 XC7V200T architecture,
then the device has 18 Kb capacity 2584 memory blocks and if configured as 32 Kb
the maximum number of blocks are 1292. The maximum capacity of block RAM is
46512 Kb.

IOs: How many IO pins the FPGA has is one of the important points to consider
while choosing theFPGA!Asdiscussed, the IOhas various standards, drive strengths.
For example, theVirtex7XC7V200Thas 1200user IOs and can be used as differential
IO pairs.

Interconnect resources: These resources are controlled and used by the back-end
tools during the place and route. It is important for the designer to know about what
are the different interconnect resources and networks available in the FPGA.

DSP blocks: To perform the MAC, shifting, comparison of the signals, filtering,
we need to have information about the number of DSP blocks available in the FPGA.
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For example, the Virtex7 XC7V200T devices have the 2160 DSP blocks. Due to use
of the dedicated DSP blocks, the other resources can be free and can be used to infer
some other functionality.

Special purpose blocks: While choosing the FPGA if we come to know about
the available hard macros such as Ethernet, PCI express, processor cores, SERDES,
then it is added advantage.

Clock resources: Howmany dedicated clock generators the FPGA has is another
important point need to be considered while selecting FPGA. The programmable
clock generator uses the PLLs, clock buffers for global and local connections, and
clock skew distribution. The Virtex XC7V200T device has 24 clock manager tiles
to provide the clocks with lower skew.

15.3 SOC Prototyping Platform

What I need to think about while choosing the SOC prototype platform?

In the SOC design context as the SOC architectures are complex and may need
million gate logic what we need to think about the FPGA resources and whether
they will be suitable for SOC prototype or no? Most of the time, we encounter the
scenario where the logic cannot fit in the single FPGA and we need to choose the
multiple FPGAs! The Xilinx Zynq boards can be suitable to prototype the SOC.

Let us think about a few key points for the SOC prototyping using FPGA!

1. As FPGA is flip-flop-rich logic, we need to think about the ratio of the flip-
flops to combinational logic. If the ratio is high, then the design can meet the
performance and the timing will be clean.

2. Whether my design is pipelined or not? This can give answer of the maximum
achievable clock frequency.

3. The overall resource estimations should be thought in the form of the flip-flops,
logic cells, memories for better results.

4. Always need to consider the FPGA gate count estimation which is the approx-
imation and not yield into the exact gate count estimation for the desired SOC
functionality.

5. Always, it is better to have the understanding of the clocking resources as that
will be useful for the multiple clock domain designs.

6. It is always essential to know about the routing resources as they can give more
information on the congestions in the design during the place and route stage. If
one of the designs uses the 80% of the resources and other design uses 60% of
the resources, then the later design has the less number of routing resources and
FPGA will be able to breathe due to use of less power.

7. Last but not least, the important point is the IO pin count for the single FPGA
implementation or implementation of the design using the multiple FPGAs. This
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is important to map the FPGA logic in case of well-partitioned design, and this
can give information about the IO multiplexing and interconnectivity challenges
during the early stage of SOC prototyping.

15.4 How to Reduce the Risk in the Prototype?

Reducing risk is the important objective, and for that purpose we need to have close
observation about the synthesis results and overall resource utilization for the SOC
design. At the architecture level, we can have the correct estimation for the use of
the external interfaces, memories, DSP blocks, IOs, multipliers.

But it is very difficult or impossible to estimate the number of flip-flops required
for the design and even it is difficult to predict the total number of logic cells for the
design. In this context, the better approach is to perform the synthesis at the end of
the RTL design phase and go through the resource utilization summary. The thumb
rule is the resource utilization for the SOC design should be in the range of 60–70%
for the single FPGA design. If the utilization is more than 70%, it is better choice to
partition the design into multiple FPGAs. That call should be taken by the prototype
team.

For the routing debug logic and for the functional specification changes additional
logic are required. So while prototyping or selecting the FPGA, do not consume the
100% FPGA resources.

If the resource utilization results into the utilization more than 100%, then def-
initely the SOC design cannot be mapped on the single FPGA and may need the
multiple FPGAs. Although there are architecture and RTL tweaks to reduce the area,
they may not yield into the efficient prototype due to high logic cell requirement,
routing, and high efforts during synthesis. Instead of that find the available LUTs in
the FPGA and take the ratio of the, LUTs required for the SOC Design to the LUTs
available in the FPGA.

This ratio is useful to conclude the number of FPGAs. But instead of thinking
about the use of 100% FPGA resources, it is better practice to use max of 60% FPGA
resources. If I am the team lead, then I will consider the FPGA resource utilization
around 40–50%.

So, the number of FPGAs� (LUTs required for the SOCDesign)/(LUTs available
in the FPGA * 40%). This can give the better freedom to the architecture team to
cope up for the architecture/design changes and to add the test and debug logic for
the SOC design.

For example, considering the Virtex7 7VX200T FPGA has LUTs�12,21,600
and design needs, for example, 21,00,000 LUTs, then the number of FPGA required
is FPGA required� (21,00,000)/(12,21,600 * 0.4)�4.29, so we can think about the
use of five FPGAs by incorporating the design portioning.
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15.5 Prototyping Challenges and How to Overcome Them?

How I can find the performance of the prototype?
Let us imagine the complex SOC design, and for the efficient prototype we need to
have the estimation of FPGA resources. How I can find the correct estimation is one
of the challenges. Is there any efficient way to get the accurate FPGA estimations and
requirements? Answer at high level is big ‘no’ as stated earlier the estimation of the
required resources may not be enough to choose the FPGA. The reason is we need to
think about the desired FPGA performance. Let us discuss the key parameters which
need to be thought to meet the performance requirements.

Recall that estimating the design resources using synthesis tool can give us infor-
mation about the ballpark figure. This technique can give information of the perfor-
mance for the design at high level. The performance capture using the synthesis tool
is without the routing delays, but using the placement and routing tool the timing
performance can be evaluated. The parameter on which the FPGA performance is
dependent is the constraints. The constraints are used by the synthesis, place, and
route tool to meet the desired performance.

If I have multiple FPGA designs, then following key parameters affects the per-
formance of the design

1. Pipelined architecture: The design without pipelining runs with less speed as
compared to the design using pipelined architecture. So, care should be taken to
have the multiple pipelined stage controllers for the design.

2. FPGA device utilization: If the FPGA utilization crosses almost around 60%,
then the design performance slows down. The reason is the congestion in the
placement and routing. Even such kind of design has high interconnect delays
andhence slower speed.ReferChap. 14 for the information about the interconnect
delays and timing.

3. Fan-out and load: The design having high fan-out runs slower as compared to
the design having low fan-out.

4. Synthesis tool and environment: The use of the synthesis tool to optimize the
design is one of the factors which are responsible for the speed of the design.

5. Inter-FPGA connectivity: The main important factor to limit the overall speed
of the prototype in the multiple FPGA systems. This is due to the inter-FPGA
connectivity and IO speed. As most of us know that IO speed is much lower as
compared to the speed of the logic on the FPGA fabric.

6. Multiplexing features: Pin multiplexing is one of the major factors to limit the
speed of the prototype the reason. Consider the practical example of use of the
multiplexed IO, and if the n bit multiplexed logic runs at the operating frequency
of 25 MHz, then to sample the n bit signals the multiplexed input should operate
at n times of 25 MHz.

7. Delays: The propagation delays on the board, data rate of individual signals are
other factors responsible for limiting the FPGA performance.
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15.6 Multiple FPGA Architecture and Limiting Factors

As stated earlier, if the design does not fit in the single FPGA, then we need to use
the multiple FPGAs to prototype the SOC. Let us think that is there any limit for the
use of multiple FPGAs? Theoretically, I can document the design at the architecture
level by using multiple FPGAs, but the efficient prototype is that the SOC can be
validated using the minimum number of FPGAs and following are the reasons.

Interconnectivity between multiple FPGAs: In the multiple FPGA architec-
tures, the interconnectivity depends upon the use of the number of FPGAs. As the
number of FPGAs grows in the system, there are issues like signal integrity and large
interconnect delays. The systemmay become slow andmay not yield into the desired
performance. Under such circumstances, it is recommended to use the fewer FPGAs
by tweaking the architecture. To overcome the inter-FPGA connectivity issue, use
the time division multiplexing for the IOs using the higher clock frequency. In such
kind of techniques, the risk is the clock rate as the multiplexed IOs need to operate
at higher clock rate as compared to the logic on the FPGA fabric.

Design partitioning: Manual design partitioning is one of the most important
bottlenecks in themulti-FPGA system as the designer needs to think about the netlists
for themultiple FPGAs and their connectivity. The design partitioning using the tools
is the complex task and manual design partitioning is not the feasible solutions in
the multi FPGA system design. In such scenarios the prototype team can think about
the mix of the partitioning techniques.

Propagation of signals and connectivity: In the multi-FPGA system, another
important issue is the settling time required for the signal due to the inter-FPGA
connectivity. The IO delays add up the cumulative effect, and it slows down the
system.

Clock generation and clock distribution: For the synchronous multiple FPGA
systems, the clock skew is one of the limiting factors in achieving the desired per-
formance. It becomes additional overhead for the designer to manage the clock
distribution on the board to balance the clocking skew.

Use of multiple licenses during prototype: Most of the time, we observe that for
the multi-FPGA design; the netlist for each FPGA should be generated concurrently.
This reduces the overall time required during the prototyping, and it improves the
productivity of the team. But this increases the testing, debug, and prototype cost as
more number of design engineers need to be employed to achieve the same.

15.7 Zynq Prototyping Board Features

As discussed earlier, for any complex SOC prototyping the FPGA should have the
features like high speed, parallel processing environment with the resources like
DSP, video and audio processing, enough memory for the internal storage. All these
features are available in Zynq 7000.
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TheARMprocessor having the required performance and pipelining features with
required IO features makes it one of the powerful FPGAs for the prototyping. The
key features of Zynq 7000 are discussed in this section.

15.7.1 Zynq 7000 Block Diagram

The Xilinx Zynq-7000 block diagram is shown in Fig. 15.1 and as shown it has
Extensible Processing Platform (EPP) that is Programmable SOC (AP-SOC). The
key features are

1. It has the FPGA fabric with the ARM processor on the single silicon die.
2. FPGA fabric has the programmable logic (PL) and processing system (PS). The

PL is based on the Xilinx 7 series architecture.

a. If we recall the Xilinx 7 series technology, then we can conclude that PL is
based on the Artix-7 or Kintex 7 series fabric which is 28 nm TSMC HPL
process.

b. It has multistandard IO, gigabit transceivers, and analog to digital converters.

Fig. 15.1 Xilinx Zynq-7000 block diagram [1]
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3. PS is based on the dual core Cortex-A9, and it has

a. Dual core Cortex-A9 MP core which can operate at 1 GHz frequency.
b. It has extended DRAM interface, L1/L2 caches, on-chip SRAMs, and other

peripheral interfaces.

4. The SOC prototyping platform is also supported by Xilinx using industry stan-
dard tools that is Xilinx/HLS and ARM/Linux.

15.7.2 Zynq 7000 Processing System (PS)

Figure 15.2 gives information about theXilinxZynq-7000 PS.As shown in the figure,
it has the Application Processing Unit (APU) and key features are listed below

1. It has dual core Cortex-A9 Neon with the 512 KB L2 cache.
2. It has Snoop Control Unit (SCU) with L1 cache coherency.
3. It has On-Chip Memory (OCM) that is dual-port 256 KB SRAM.
4. It has external memory interfaces those are DDR2/DDR3 and ECC memory

controller.
5. Even the Zynq 7000 PS has the Quad SPI and NAND/NOR flash which can be

used during the design configuration.

Fig. 15.2 Xilinx Zynq-7000 processing system [1]
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6. The Zynq 7000 has the peripheral support using the standard IO for PS/PL (2x
Ethernet, 2xUSB, 2xUART, GPIO, 2xI2C, 2xCAN, and 2xSPI). Even it has
the PLL for the clock, Debug Access Port (DAP), DMA controller, interrupt
controllers, and timers.

15.7.3 Zynq 7000 Programmable Logic (PL)

The Xilinx Zynq-7000 has PL–PS interfaces, and the key interfaces include Accel-
erator Coherence Port (ACP) which is for the coherence access to caches. The
General Purpose (GP) AXI port has 2x masters and 2x slaves with the connect to
central crossbar.

It has high-performance (HP) AXI ports that is 4x master, FIFO buffered, and
direct memory access (DMA). It has system interfaces, and the key interfaces include
the 16 shared interrupts to GIC, 4 private interrupts to core and debug interfaces.
Figure 15.3 gives information about the PL.

Fig. 15.3 Xilinx Zynq-7000 programmable logic [1]
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Fig. 15.4 Zynq 7000 logic fabric [1]

15.7.4 Zynq 7000 Logic Fabric

XilinxZynq-7000 has the logic fabricwhich is same of theXilinx 7 series technology.
Figure 15.4 gives information about the logic fabric, and it has the embedded BRAM.
DSP slices, CMTs and IOs, PCI Express and A/D interfaces.

15.7.5 Zynq 7000 Clocks

Xilinx Zynq-7000 clock generation module is shown in Fig. 15.5 and it has the
PLLs which are used to generate the clock for the CPU, DDR, IO, and PL, whereas
PS_CLK is external 30–60 MHz reference clock. Even the clock generation logic
has four general purpose clocks used for PL, and they are named as FCLK_CLK0,
FCLK_CLK1, FCLK_CLK2, FCLK_CLK3.

15.7.6 Zynq 7000 Memory Map

The Xilinx Zynq-7000 memory map is shown in Table 15.1 and it has the 4 GB of
addressable memory.
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Fig. 15.5 Zynq 7000 clock generation [1]

15.7.7 Zynq 7000 Device Family

The Xilinx Zynq-7000 family has the different capacity devices and is shown in
Table 15.2 Low-end devices are 7010, 7015, and 7020, and mid-range devices are
7030, 7035, 7045, and 7100. These devices have different packing options, and even
they are available in different speed grades.

Table 15.1 Xilinx Zynq-7000 memory map [1]

Start address Size (MB) Description

0x0000_0000 1,024 DDR DRAM and on-chip memory (OCM)

0x4000_0000 1,024 PL AX I slave port #0

0x8000_0000 1,024 PL AX I slave port #1

0xE000_0000 256 IOP devices

0xF000_0000 128 Reserved

0xF800_0000 32 Programmable registers access via AMBA APB bus

0xFA00_0000 32 Reserved

0xFC00_0000 64 MB–256 KB Quad-SPI linear address base address (except top 256
KB which is in OCM), 64 MB reserved, only 32 MB is
currently supported

OxFFFC_OOOQ 256 KB OCM when mapped to high address space
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Table 15.2 Xilinx Zynq-7000 devices [1]

15.7.8 Zed Board

Xilinx Zynq-7000 prototyping board is shown in Fig. 15.6 and key features are listed
below

1. The Xilinx device family is Z-7020, and speed grade is −1. Maximum operating
frequency is 667 MHz that is ARM clock, and bus clock is 150 MHz.

2. It has onboard DRAM of size 512 MB, and the memory type is DDR3.
3. It has interfaces for the LED, switch GPIO, Ethernet, USB, UART, and SD cards.
4. It has PL peripherals for the audio, video, and display. Other peripheral modules

and FPGA mezzanine card (FMC).
5. It has system control features for the reset, clock, and debugging.

15.8 Important Takeaways and Further Discussions

As discussed in the chapter, the SOC can be prototyped using the single or multiple
FPGAs and following are key important points to be considered while prototyping
the SOCs using FPGA.

1. Use the concepts of the synchronizations of the clock network to distribute the
clock across multiple FPGA.

2. Choose the target FPGA to have the desired speed of the prototype.
3. Partition the design in the better way to have FPGA resource utilization of

60–70% for each FPGA.
4. Use the high-end FPGAs like Zynq 7000 to realize the better prototype.
5. Use the high-speed IOs to transfer the data between the multiple FPGAs.

The next chapter discusses the SOC system-level verification and test debug logic.
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Fig. 15.6 Xilinx Zynq-7000 board features [1]

Reference

1. www.xilinx.com

http://www.xilinx.com


Chapter 16
Testing at the Board Level

For the SOC debugging, use the ILA cores and logic analyzers.

Abstract The chapter discusses the important points useful during the board bring-
up stage to validate the SOC design. The chapter covers the debug planning, chal-
lenges, board testing for the single FPGA and multiple FPGAs. This chapter can
give the understanding of use of the logic analyzer while testing the SOC design.
The inter-FPGA connectivity issue, pin and location constraint issues are also dis-
cussed in this chapter.

Keywords FPGA · IO · Configuration · Multiple voltage domains · IO pins
Pin muxing · LVDS · Timing · Gated clock · Skew · Glitches · Impedance
Signal integrity · Latency · Throughput · Logic analyzer · ChipScope Pro · ILA
API · Oscilloscope
The SOC design is ready and the verification is carried out. Now the last important
phase is to validate the design on the board. The design can be single FPGA or
multiple-FPGA design this need to be validated on the FPGA board. The chapter
discusses the board testing, challenges and how to overcome them to have the SOC
prototype.

16.1 Board Bring-Up and What to Test?

What should be the strategy while testing the million gate SOC? This is the first
important question needs to be answered! As a prototype team there should be debug
and testing plan in place. The better debugging plan to test the single FPGA design
or multiple FPGA design can create the significant amount of the improvement in
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the productivity for the SOC design. Following are few important steps need to be
followed for the larger SOC designs.

1. Test the board for basic read/write.
2. Test the add-on boards and connectivity.
3. Configure the single FPGA with the small design.
4. Configure multiple FPGAs using the design partitioning.
5. Understand the implementation issues.
6. Use the actual SOC design and test.
7. Check for the issues and fix them.
8. Document the results.

16.2 Debug Plan and Checklist

The board bring-up and debug plan need to be efficiently documented during the
design planning and the architecture phase. It is not possible that the design down-
loaded on the FPGA can work right for the first time. It is one of the time consuming
tasks to debug the design at the board level. For the single andmultiple FPGAdesigns,
the following can be included in the debug plan:

1. Basic test needs to be carried out for the single FPGA designs.
2. Test for the add-on boards interfaced with FPGA.
3. High-speed IO tests.
4. Interface test.
5. Testing and debug using logic analyzer.
6. Multiple FPGA connectivity and debug.

The main objective of all the above is to catch the bugs at the board level. Most
of the bugs may not be found during the functional verification, and the better debug
plan using the EDA tools, logic analyzers, and transactors can give themore visibility
to such kind of the bugs. These bugs at system level can be identified and fixed at the
synthesis, P and R, or at the board level. The following can be few of the guidelines
used for debugging the FPGA prototype (Table 16.1).

16.2.1 Basic Tests for the FPGA

Run the basic tests to understand the programmability of the FPGA.

1. Read/write test: Read and write the FPGA registers, and confirm the FPGA is
configured by the correct bitmap file.

2. Counter test: Use the existing switches on the FPGA board to check the con-
nectivity, and check for the clock and reset for the programmed FPGA.
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Table 16.1 Few guidelines for the debug

Guideline Description

Use the smaller design Use the smaller design to configure the single FPGA at the
first time, and carry out the basic read/write tests

Check for the add-on board
connectivity

Check for the add-on board connectivity with the FPGA

Check for the IO Check for the working of the multiplexed IOs

Check for the multiple FPGA
connectivity

Check for the multiple FPGA connectivity by partitioning
the smaller design across multiple FPGAs

Check for the IO pad configuration Check whether the IOs are configured in the correct
manner or not?

Check for the external world
connectivity

Check for the connectivity with the external boards like
flash controller interface, DDR interface

Check for the external chipset and
IP interfaces

Whether the IPs and the chipset are having the required
behavior need to be checked

Use Xilinx IO delay elements Use programmable IO delays to control the IO timings and
to establish the connectivity with the external element

Tweak the clock rate For the higher clock rate, if the system is not working for
the read/write; then to ensure and conclude the issue,
reduce the clock rate. If at low clock rate the system
responds, then try to debug the issue for higher clock rate

Check for the bus connectivity Check and confirm the connectivity between the FPGA and
logic analyzer for the little and big endian-ness

Check for the termination
impedances

Most of the time at the board level design does not work
due to wrong termination

High-speed IO test Check for the high-speed transceivers for the gigabit data
transfer, and then test the protocol

16.2.2 Add-On Board Tests

Write a small routine to configure the add-on boards interfaced with the FPGA, and
confirm that the FPGA can read or write the information from the add-on boards.
Debug team can use small routine to configure the multiple registers on the main
FPGAboard andon the add-on board, and confirm the connectivity and configuration.

16.2.3 Test the External Logic Analyzer and FPGA
Connectivity

Test the logic analyzer bus working with the main FPGA board. The transfer of the
small packet from the FPGA bus can confirm the connectivity.
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16.2.4 Multiple FPGA Connectivity and IO Test

Check for the pin multiplexing and high-speed time division multiplexing. Create
the test environment to check for the TDM and data rate at the multiplexed IO pins.

16.2.5 Test for the Multiple FPGA Partitioning

If the prototype has the multiple FPGAs in the design, then check for the inter-FPGA
communication by writing the small design. Small design to ensure the connectivity
between FPGA can be partitioned across the multiple FPGAs quickly. This can be
small controllers for similar kind of read/write inside the multiple FPGAs.

16.3 What Are Different Issues on the FPGA Boards

Document the major issues on the board and test for them. Few of the issues are
listed in Table 16.2.

16.4 Testing for the Multiple FPGA Interface

The following can be the strategies for the design prototyping for themultiple FPGAs:

1. Timing checks for the design partitioned at the system level.
2. The effect of the redundant logic or logic removal on the connectivity across

multiple FPGAs.
3. Is the inter-FPGA connectivity intact. This can be tested by read/write transac-

tions across the multiple FPGAs.
4. Whether the gated clocks are mapped into the FPGA equivalent or the design

exhibits some issues due to the non-convertible clocking using MUX.
5. Are there any timing violations due to the internally generated clocks?
6. Is the multiplexed interconnects are working at the transfer clock speed or need

to tweak the transfer clock.
7. The compatibility of the interconnects and interfaces with reference to the source

and sink currents at board level.
8. Whether all the pin locations and constraints are validated.

Consider the practical issue at the board level while communicating between the
multiple FPGAs (Fig. 16.1).

Consider the launch and capture FPGA has System_clk and the design runs at
the system clock frequency. The IO signal is launched using the Transfer_clk and
captured at the input of de-mux using the Transfer_clk. The maximum frequency
can be calculated by using
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Table 16.2 The board testing issues and solutions

Debug issue Type Description Action

Design does not work at
higher clock

Timing The design might have
the timing violations at
high speed, and to
confirm that, reduce the
clock rate and then check
for the design. If the
design works at the lower
clock rate, then debug

Go through the
implementation timing
report, and check for
warnings. Check for the
critical paths and missing
constraints

The IO multiplexing does
not work

IO speed This may be due to the
improper ratio of the
system clock at which
design works and transfer
clock at which data is
transferred

Check for the timing
constraints for the
transfer clock and system
clock. Check for the
timing report

Design does not work at
low clock frequency

Timing This may be due to hold
violation

Check for the timing
reports and constraints,
and then fix them by
tweaking the min-max
analysis

Design does not have the
timing violation during P
and R, but the design has
issue at board level

Board
delays

One of the reasons may
be the onboard delays are
not considered during the
timing analysis

Check for the onboard
delays from vendor and
include them during the
timing analysis. Use the
safety delay margin or
tweak IO delays

The design does not work
for the multiple FPGAs
having different clock
domains

Timing The issue is metastability
and synchronization

Check for the use of
synchronization for the
multiple clock domain
designs. One more reason
may be design
partitioning at the
multiple clock domain
boundaries

The design has gated
clock and not working on
the board

Timing
violation

The design may have the
hold time violations

Check for the gated clock
conversions. Check for
the non-convertible
clocks and the warning
reports

Data are available at the
output of launch FPGA
pad but not captured in
the input register of
capture flip-flop

IO configu-
ration
issue

This may be issue on
board due to IO standards

Check the single-ended
IO configuration and
differential IO
configuration. Make sure
the correct IO standards
are used during IO
mapping

(continued)
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Table 16.2 (continued)

Debug issue Type Description Action

The design works for
some conditions but not
for all the conditions

IO
connectivity

May be due to the
improper termination of
the IO

Check for the IO
impedances at
transmitting and
receiving end. Check
more details in the FPGA
vendor-specific
digital-controlled
impedances

The design works
individually on FPGA but
not working when
configured on the
multiple FPGAs

IO
connectivity

This may be due to the IO
connectivity, IO voltage
levels, signal levels

Check for the IO
constraints and IO pin
mapping. Even check for
the IO termination

The FPGA boards have
multiple cables, and the
design does not work

Connectivity
or cable
faults

This may be due to
termination impedance,
delays, timing violation,
or signal integrity

Check for the termination
impedances for each
cable, and then use the
vendor-dependent data
and fix the issue

Fig. 16.1 Multiple FPGA IO transfer issue

Fmax � (1/(Tmux_delay + Ton_board + Tdemux_in))

Where Tmux_delay � Output delay of multiplexer
Ton_board � On board delay
Tdemux_in � Input delay at the capture FPGA
For example consider Tmux_delay � 4 nsec
Ton_board � 2 ns
Tdemux_in � 2 ns

Then Fmax � 1/8 ns � 125 MHz
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For the safer side, take tolerance in the design around 1 ns; then, the maximum
frequency for the design is 111.11 MHz.

The question is that whether the design works at this frequency. If you refer Chap.
14, I have stated that IO multiplexing using n: 1 MUX needs the transfer clock of
n*system_clock. Now, if the system_clock is 25 MHz then the transfer_clk should
be minimum 100 MHz or maximum 125 MHz. But practically it is not possible to
achieve this clock rate to transfer the IO signal.

Practically, the maximum design frequency of such type of multiplexed IO is
limited by the clock latency. If the transfer clock frequency is 111.11 MHz, then the
System_clk frequency should be 12.35–15.70 MHz.

So the prototype team should find out the:

1. Maximum transfer frequency using the IO delays, onboard delays, and additional
tolerance margin delay.

2. Find the ratio of the system_clk and transfer_clk.
3. Give the constraints in synthesis andP andR for the transfer_clk and system_clk.
4. Give the clock to clock constraints in the synthesis andP andR for the transfer_clk

and System_clk.

16.5 Debug Logic and Use of Logic Analyzers

The following section discusses the use of the logic analyzers and few practical
considerations while debugging the design.

FPGA Debug:

1. Use feature of the EDA tool to view the internal nodes.
2. Tool should observe the FPGA boundary and the FPGA surrounding logic.
3. Debug and testing, characterization of the high-speed IO: For the fast IOs at

1 MHz, the PC board traces act as transmission line and due to that issue of the
signal integrity.

16.5.1 Probing Using IO Pins

Use the FPGA IO pins and probe using logic analyzer (Fig. 16.2).
The required signals to probe can be routed at the FPGA pins and can be tested

using the external logic analyzer. But for the design which needs the larger number
of signals to probe this is not the best solution as there is always limitation on the
FPGA pin count.
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Fig. 16.2 Probing using the probe points

16.5.2 Use of the Test MUX

The advantage is that it needs the less number of pins, but the issue is that the probing
of MUX output lines is only possible (Fig. 16.3).

If 16 signals need to probe, then use the 4X 4:1 MUX and two select lines. At the
Output_pins, four signals can be available depending on the status of the select_pins
and they can be used by the external logic analyzer for debug.

16.5.3 Use of Logic Analyzer: Practical Scenario (To Detect
the Data Packet Is Corrupted)

Consider the FPGA design which has multiple-state machine controllers and the
other associated interfaces likeVideo/AudioCODEC, 10/100MBEthernet interface,
and other physical interfaces. If the data packet transferred from the Ethernet is
corrupted and not identified at the functional simulation, then the overall design has

Fig. 16.3 Test MUX
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Fig. 16.4 Logic analyzer to detect the corrupted data packet

the bug.Under such circumstances, it is essential to probe the statemachine controller
designed for accepting the data packets from the Ethernet.

Use the logic analyzer, and try to probe the state machine controller by identifying
the state of the state machine controller where packet is corrupted. So look inside
the FPGA before the corrupted packet and probe the design. Identify the state where
packet is corrupted, and trigger the logic analyzer for probing.

Create the debugging scenario in the simulation, and fix the issue (Fig. 16.4).

16.5.4 Oscilloscope to Debug the Design

Another debug solution is to use the oscilloscope to monitor the signals at the FPGA
boundary. It is better to have the oscilloscope to monitor the mixed signals. The
analog and digital channels can monitor the behavior of the FPGA and the signal
activity at the FPGA boundary.

Consider theDDRcontroller interfacedwith the FPGA, and the address is updated
from 01FFH to 0200H but the issue is in the reading of the data. On the previous
read address select the data were read into the FPGA from the memory but now the
issue is in the read. This needs to be debugged, and under such scenarios, the mixed
signal oscilloscope can be used to monitor the behavior of the signal at the FPGA
boundary.

By triggering the oscilloscope for this event, the nature of the read address select
can be captured. The reason may be the skew, slow transition of the signal, or weak
driving strength. This can be fixed at the design level and at the board level (Fig. 16.5).
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Fig. 16.5 Use of the mixed signal oscilloscope for the probing

16.5.5 Debugging Using ILA Cores

To select many nodes, the better technique is use of the in-built or Integrated Logic
Analyzer (ILA) with block RAM (BRAM). This is an inexpensive solution, and no
additional pins are required. But it increases the size of the memory inside the FPGA.
In this mechanism, the required nodes can be selected and then traces are captured
and send to ChipScope Pro via JTAG (Fig. 16.6).

The use of the ChipScope Pro to establish communication via JTAGwith the ILA
is shown in Fig. 16.7.

Fig. 16.6 Use of ILA cores for debugging

Fig. 16.7 Use of Xilinx ChipScope Pro for debugging [1]
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Fig. 16.8 ChipScope Pro view during debugging [1]

There are ways to insert the ILA into the design. They can be instantiated at the
RTL level and then synthesize the design, place-route the design, and then generate
the bitstream file.

The other way is to insert the ILA blocks depending on the requirements into the
presynthesized design and then perform the place-route and generate the bit file. The
ChipScope can download the bitstream file into FPGA including the ILA cores.

As shown, the JTAG controller block is interfaced with the ILA cores and the data
can be taken out from the ILA cores through JTAG and can be viewed by ChipScope
Pro at host PC (Fig. 16.8).

16.6 System-Level Verification and Debugging

For the better verification outcome, use the integration of the existing EDA tool
environment, softwaremodels, and the FPGAprototyping boards. This can be treated
as hybrid verification. This allows the overall verification and testing of the FPGA
prototype with high verification coverage goals and even the detection of the bugs
which were not determined in the early verification phase.
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1. There are industry standard cycle-based and event-based simulator available to
enable the verification task to havemore functional coverage. Even the transactors
and transaction-level modelling can be used to verify million gate count design.

Is it possible that if we connect the simulator with the system and it works in the
first attempt? Answer is big ‘no’ as there are different scenarios, interfaces, and data
transfer issues for the complex SOC design.

The verification and debugging need significant amount of efforts, and it is a
time-consuming task.

For the moderate gate count design, the simulation to understand the functional
mismatches can serve the purpose. But for the million gate SOC designs the verifi-
cation, debugging is the rigorous and time-consuming task. Almost around 60–70%
of the design cycle time is invested in the verification of the SOC. If we consider for
the FPGA prototype, then for the RTL coding just around 10–15% design cycle time
is required. And for the remaining phases from the synthesis to the board bring-up
it consumes around 85–90% of design cycle time.

The following can be two important approaches to verify the million gate SOC.

16.6.1 Hardware–Software Coverification

In this, the signal-level bidirectional link can be used from simulator to the FPGA
prototype. By using the simulator, API calls the communication can be established
to verify the design under test. This can be used for the early detection of the bugs
by writing the automated testbench. But if more functions need to verify, then such
type of verification approach slows down the overall speed.

The strategy is to have the hardware–software coverification by using the bidirec-
tional cycle accurate link between the FPGA prototyping board and the simulator.
This can be accomplished by having the synthesizable wrapper for the Verilog or
VHDL and other wrapper for the software simulator. The synthesizable code can be
controlled by the hardware wrappers, and the non-synthesizable code can be con-
trolled by the simulator. In this, the design is controlled by the simulator testbench
and the data from hardware and software wrapper can be given to the bidirectional
PLI interface.

But we can say that this type of approach has limitation as the hardware works
at high speed and simulator at low operating frequency so may not be viable for the
real-time interface. If themonitoring of themore internal registers is the requirement,
then this slows the performance.
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SYSTEM C
Environment  Func on 

call C/C++

FPGA Board

Fig. 16.9 Transactor calls using System C

16.6.2 Transactors and Transaction-Level Modeling

This is one of the approaches which is recommended for the hybrid prototyping, and
in this, the transaction link is used between the simulator and FPGA prototype. This
can be achieved by having the testbench at the system level.

This can be done by using the System-C environment by using the transactors at
the host PC software and DUT in the hardware. If the bidirectional link is established
between the virtual model and the FPGAboard, then by passing themessage from the
transactor the communication can be established. This type of verification strategy
results in faster verification as compared to the hardware–software coverification
(Fig. 16.9).

16.7 SOC Prototyping Future

Over the past decade,we havewitnessed the substantial growth in theVLSI areas. The
EDAcompanies and the chipmanufacturing houses have evolved the nanometer SOC
designs. In such circumstances, the miniaturization era is at the verge of evolution
of the new trends and technological changes.

1. Artificial intelligence: The need of this century is the innovation of the prod-
ucts using the artificial intelligence mechanisms. The SOCs can be designed
by embedding the artificial intelligence and algorithms. As the process node is
shrinking further, there may be evolution like embedding the intelligence in the
SOC. The SOCs can be used in the general purpose applications or in any kind
of the sophisticated system, and the intelligence embedded systems can be con-
trolled and configured using the reprogrammability using the complex FPGAs.

2. Quantumcomputing: The algorithms using quantummechanism to improve the
design speeds will be evolved in the future. The prize of the quantum computing
machines will drop exponentially in the next few decades. We will really witness
the high-speed low-power ASIC designs and FPGA prototyping using the new
evolved techniques.

3. High-density FPGAs: We will witness the FPGA evolution using the lower pro-
cess node. The evolution can give us the intelligent and high-density FPGAs
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having high-speed interconnect, neural network cores and capability, pro-
grammable intelligence. These FPGAs can be used to validate the SOC designs
in the area of

1. High-resolution and high-speed video processing
2. Testing of the neural network algorithms
3. Medical imaging and diagnosis
4. Satellite communications
5. Artificial intelligence.

16.8 Important Takeaways and Further Discussions

As discussed in the chapter, the SOC can be tested at the board level using the EDA
tools, logic analyzer, oscilloscopes. The following are the important points:

1. Test the single FPGA design first, and then test the multiple FPGA boards.
2. Check for the interconnectivity between the multiple FPGAs using read/write

transactions.
3. Check for the clock gating checks and redundant logic or logic removal effect.
4. Use the ILA cores with the Xilinx core generators to debug the design.
5. The MUX-based probing can be used if probe points are limited.
6. Use the ChipScope Pro to probe multiple signals at a time.
7. Check for the IO pin mapping, locations, standards, and voltage levels during

debugging the prototype.
8. Check for the pin multiplexing data rate while debugging the design.
9. Use the hardware–software coverification to verify the complex designs.
10. Use the system C-based transactors to establish communication between the

complex FPGA and the host.

Reference

1. www.xilinx.com
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Appendix A
Few Synopsys Commands [1]

Few of the commands by Synopsys are listed below. They can be used during
synthesis and timing analysis

Command Description

read-format <format_type> <filename> Read the design

analyze –format <format_type> <list of
file names>

Analyze the design for the syntax errors and
translation before building the generic logic

elaborate –format < list of module
names>

Used to elaborate the design

check_design To check the design problems like shorts, open,
multiple connection, instantiations with no
connections

create_clock –name <clock_name> -
period <clock_eriod>
<clock_pin_names>

Create the clock for the design

set_clock_skew –rise_delay
<rising_clock_skew> <clock_name>

Define the clock skew for the design

set_input_delay –clock <clock_names>
<input_delay> <input_port>

To set the input port delay

set_output_delay –clock <clock_names>
<output_delay> <output_port>

To set the output port delay

compile –map_effort <map_effort_level> To compile with the low, medium or high map
effort level

write –format <format_type> output
<file_name>

To save the output generated by the synthesis
tool

set_false_path –from [get_ports <port
list>] –to get_ports <port list>]

To set the false path

set_multicycle_path – setup <period>
-from [get_cells] –to [get_cells[

To push the setup for the design having
multicycle path

(continued)

© Springer Nature Singapore Pte Ltd. 2019
V. Taraate, Advanced HDL Synthesis and SOC Prototyping,
https://doi.org/10.1007/978-981-10-8776-9

291

https://doi.org/10.<HypSlash>1007/�978-�981-�10-�8776-�9</HypSlash>


(continued)

Command Description

set_multicycle_path –hold <period> -from
[get_cells] –to [get_cells[

To push the hold for the design having
multicycle path

set_clock_uncertanity To define the estimated network skew

set_clock_latency To define the estimated source and network
latency

set_clock_transition Define the estimated clock skew

set_dont_touch Used to prevent the optimization of the mapped
gates

For more information please visit

1. http://www.synopsys.com/
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Appendix B
XILINX-7 Series Family

The Xilinx-7 series family comparison and the resource summary are listed below.
For more information visit www.xilinx.com.

• XILINX-7 series family comparison

Max. capability Spartan-7 Artix-7 Kintex-7 Virtex-7

Logic calls (K) 102 215 478 1955

Block RAMa

(Mb)
4.2 13 34 68

DSP slices 160 740 1920 3600

DSP
performanceb

(GMAC/s)

176 929 2845 5335

Transceivers – 16 32 96

Transceiver
speed

– 6.6 Gb/s 12.5 Gb/s 28.05 Gb/s

Serial
bandwidth

– 211 Gb/s 800 Gb/s 2784 Gb/s

PCIe interface – x4 Gen2 xB Gen2 x8 Gen3

Memory
interface (Mb/s)

800 1066 1866 1866

I/O pins 400 500 500 1200

I/O voltage (V) 1.2–3.3 1.2–3.3 1.2–3.3 1.2–33

Package options Low-cost,
wire-bond

Low-cost,
wire-bond, lidless
flip-chip

Lidless flip-chip and
high-performance
flip-chip

Highest
performance
flip-chip

aAdditional memory available in the form of distributed RAM
bPeek DSP performance numbers are based on symmetrical filter Implementation

• Virtex-7 FPGA feature summary
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• Xilinx-7, Artix-7, Kintex-7, Virtex-7 ordering information

For more information please use the following link

1. http://www.xilinx.com/
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Appendix C
Intel FPGA Stratix 10 Devices

The Intel FPGA Stratix 10 series family comparison and the resource summary are
listed below. For more information visit www.altera.com

• Intel FPGA Stratix 10 core plan

Intel Stralix 10
GX/SX device name

Logic
elements
(KLE)

M20K
blocks

M20K
Mbits

MLAB
counts

MLAB
Mbits

18 � 19
multipliersa

GX 400/SX 400 378 1537 30 3204 2 1296

GX 650/SX 650 612 2469 49 5184 3 2304

GX 850/SX 850 841 3477 68 7124 4 4032

GX 1100/SX 1100 1092 4401 86 9540 6 5040

GX 1650/SX 1650 1624 5851 114 13,764 8 6290

GX 2100/SX 2100 2005 6501 127 17,316 11 7488

GX 2500/SX 2500 2422 9963 195 20,529 13 10,022

GX 2800/SX 2800 2753 11,721 229 23,796 15 11,520

GX 4500/SX 4500 4463 7033 137 37,821 23 3960

GX 5500/SX 5500 5510 7033 137 47,700 29 3960

• Interconnect, PLL, and hard IPs FPGA core

Intel Stratix 10 GX/SX
device name

Interconnnects PLLs Hard IP

Maximum
GPIOs

Maximum
XCVR

fPLLs I/O PLLs PCIe hard
IP blocks

GX 400/SX 400 392 24 8 8 1

GX 650/SX 650 400 48 16 8 2

GX 850/SX 850 736 48 16 15 2

GX 1100/SX 1100 736 48 16 15 2

GX 1650/SX 1650 704 96 32 14 4
(continued)
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(continued)

Intel Stratix 10 GX/SX
device name

Interconnnects PLLs Hard IP

Maximum
GPIOs

Maximum
XCVR

fPLLs I/O PLLs PCIe hard
IP blocks

GX 2100/SX 2100 704 96 32 14 4

GX 2500/SX 2500 1160 96 32 24 4

GX 2800/SX 2800 1160 96 32 24 4

GX 4500/SX 4500 1640 24 8 34 1

GX 5500/SX 5500 1640 24 8 34 1

• Intel FPGA Stratix 10 family architecture
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• Intel Stratix 10 FPGA family sample ordering information

For more information please use the following link

1. http://www.altera.com
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Index

A
Accelerator Coherence Port (ACP), 272
Active clock edge, 174
ADC, 143, 160
ADC and DAC logic, 221
Adders, 42, 143
Address bus, 64
AES encryption key, 226
AHB and APB bus, 114, 134
AHB/APB, 114
ALM, 261
Analog, 9
Analog blocks, 221, 264
Analog IPs, 159
Analysis modes, 188
API, 288
A place and route tool uses, 167
Application Processing Unit (APU), 271
Application Specific Integrated Circuit (ASIC),

4
Application Specific Standard Product (ASSP),

5
AP-SOC, 270
Architecting the SOC, 67
Architecture, 8, 19, 61, 165, 189, 235, 267
Architecture/design changes, 267
Area, 8, 21, 160
Area report, 244
ARM clock, 275
ARM IP, 209
ARM processor, 270
ARM processor system, 114
Artificial intelligence, 15
ASIC clock gating, 44

ASIC library, 161, 234
ASIC memories, 239
ASIC testing, 191
ASIC/FPGA designs, 170
ASIC/SOC designs, 159
A. S. Rock, 2
Asynchronous multiplexing, 226
Audio processing, 8
Automatic, 239
Automatic partitioning, 233, 239
AXI ports, 272

B
Backend flow, 170, 242
Backend tool, 166, 265
Bandwidth, 254
Base array, 10
Basic tests, 264
48-bit accumulator, 149
64 bit ECC, 135, 204
Bit-stream, 287
Blocking assignments, 25, 27
Block level constraints, 164
Block RAM (BRAM), 131, 135, 169, 204, 218,

238, 265, 273, 286
Board layout, 251
Bottom up approach, 163
Boundary scan, 234
Bus bandwidth, the, 64
Bus clock, 275
Buses, 65
Bus logic, 8
By-passable registers, 261
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C
Cable delay, 254
Cache controller, 66
Cache memory, 65
Capture FPGA, 248
Cascade, 33
Cascaded output adder chain, 150
Case, 50
Cell layout, 10
Cell library, 2, 136, 204
Central crossbar, 272
Certify Pin Multiplier (CPM), 228
Channeled gate array, 10
Channel less gate array, 10
ChipScope pro, 286
Circuit, 248
Circular buffers, 249
CLB, 169, 194, 265
Clean timing paths, 159
Clock and reset network, 233
Clock buffers, 170
Clock distribution, 225
Clock divider, 191
Clock enable, 45, 50
Clock gating, 170, 192
Clock gating cells, 44, 170
Clock gating logic, 234
Clock generators, 266
Clocking architecture, 207
Clock Management Tiles (CMT), 202
Clock multiplexing, 191
Clock network delay, 235
Clock network latency, 190
Clock path, 187
Clock port, 180
Clock rate, 7, 64
Clock skew, 170, 177, 269
Clock skew distribution, 266
Clock spine, 207
Clock tree, 225
Clock tree synthesis, 8, 21
Combinational, 184
Combinational loops, 26
Combinational partitioning, 223
Combinational paths, 214
Compatible interfaces, 264
Complex functionality, 200
Computational elements, 143
Concurrent execution, 64
Concurrent IO data transfer, 67
Configuration, 279
Congestion, 268
Constraint file, 184
Constraints, 19, 61, 161, 268, 283

Constraints (SDC), 179
Content addressable, 135, 204
Controllability, 23
Core generators, 168
Cortex A9, 271
Coverage goals, 264
Co-verification, 289
Coverification and use of IPs, 23
Critical path, 195
Critical path delay, 261
Crosstalk, 248
Custom interfaces, 23
Cycle based, 288

D
DAC, 143, 160
Data arrival, 182
Data Arrival Time (AT), 182, 187
Data bus, 64
Data convergence, 42
Data input, 180
Data integrity, 42, 177
Data memories, 66
Data path, 189
Data rate, 67, 160
Data Required Time (RT), 182
DDR3, 275
DDR4 memory interfaces, 137
Debug, 23
Debug Access Port (DAP), 272
Debug and test circuitry, 252
Debug plan, 278
Decrypted, 226
Derating, 187
Design compiler, the, 200
Design constraints, 21, 161
Design library, 200
Design partitioning, 144, 166, 199, 252
Design performance, 66
Design planning, 278
DesignWare, 161
DesignWare library, 162
DFT, 13
Differential IO pairs, 265
Differential signal, 258
Differential signals between, 252
Digital, 9
Digital blocks, 221
Digital Signal Processing (DSP), 9, 202
Direct interface, 248
Direct port connections, 69
Distributed RAM, 120, 169
DMA controller, 272
DMA interface, 144
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Don’t touch, 166, 234
Double Data Rate (DDR), 137
DRAM, 275
Drive strengths, 265
DSP algorithm, 141, 143, 149, 169, 206
DSP block, 142, 150, 160, 169, 218, 238, 266,

267
DSP48E1, 206
DSP48E1 slice, 149
DSP processor, 141, 143
DSP slices, 273
Dual port, 135, 204
Dual port RAM, 120, 121, 169
Dynamic, 177
Dynamic connectivity, 251
Dynamic power, 50, 170
Dynamic simulator, 177
Dynamic Timing Analysis (DTA), 177

E
EDA tools, 252
Efficiency, 260
Embedded systems, 64
Emulation, 22
Encrypted key, 226
Encrypted source code, 226
Endpoint, 180
Energy density, 66
Error corrections, 137, 205
Ethernet, 266
Ethernet MAC, 209
Event based simulator, 288
Extensible Processing Platform (EPP), 270
External interfaces, 267
External IP board, 265
External memory, 134, 264
Extracted nets (SPEF), 179

F
False path, 179, 191
Fan-out, 268
FFT algorithms, 152
FIFO, 132, 135, 160, 204, 249
FIFO or circular buffers, 144
Filtering, 265
FLG1925, 250
Floating point mode, 151
Floating point operations, 144
Floorplan, 8
Floorplanning, 13
Floor planning tool, 168
Formal Verification (FV), 217
FPGA bit-stream file, 167
FPGA boundary, 283

FPGA clock gating, 44
FPGA connectivity, 269
FPGA editors, 168
FPGA-equivalent, 149
FPGA fabric, 136, 171, 204, 209, 269, 270
FPGA functional, 194
FPGA gate count, 266
FPGA interfaces, 22
FPGA netlist, 166, 264
FPGA pad, 259
FPGA performance, 268
FPGA resources, 233, 244, 264, 266
Frame prediction logic, 148
Frame processing logic, 148
FSM controller’s, 160
FSMs, 26, 132
Full custom, 7
Functional and timing proven IPs, 166
Functional correctness, 264
Functional coverage, 288
Functional verification, 21, 264, 278

G
Gate array, 9
Gated clock implementation, 170
Gate level netlist, 161, 179
Gating strategy, 44
GDSII, 21
General purpose IO, 8, 137
General purpose registers, 68
Generated clocks, 191
Gigabit transceivers, 270
Glitches, 26, 44
Global clock, 200
Global Foundries (GF), 6
Glue logic, 234
Gordon Moore, 1
Grouping, 32, 234
GTECH, 226

H
H.264 encoder, 148
Hamming code, 137, 205
Hard floating point adders, 150
Hard IP, 226, 264
Hard macros, 266
Hard or soft memory controllers, 137
Hard processor DSP core, 143
Hardware software, 289
Hardware and software partitioning, 159
HDL synthesis, 234
Hierarchical designs, 4, 234
High impedance, 34, 251
High performance IOB, 207

Index 303



High precision fixed point, 150
High speed interfaces, 111
High speed IO, 160, 218, 233, 240
High Speed Time Division Multiplexing

(HSTDM), 228
Hold analysis, 188
Hold check, 183
Hold slack, 183, 193
Hold time violation, 188
Hybrid Memory Cube (HMC), 138
Hyperflex core architecture, 260
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